Do you want to publish a course? Click here

cGAN-based Manga Colorization Using a Single Training Image

111   0   0.0 ( 0 )
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

The Japanese comic format known as Manga is popular all over the world. It is traditionally produced in black and white, and colorization is time consuming and costly. Automatic colorization methods generally rely on greyscale values, which are not present in manga. Furthermore, due to copyright protection, colorized manga available for training is scarce. We propose a manga colorization method based on conditional Generative Adversarial Networks (cGAN). Unlike previous cGAN approaches that use many hundreds or thousands of training images, our method requires only a single colorized reference image for training, avoiding the need of a large dataset. Colorizing manga using cGANs can produce blurry results with artifacts, and the resolution is limited. We therefore also propose a method of segmentation and color-correction to mitigate these issues. The final results are sharp, clear, and in high resolution, and stay true to the characters original color scheme.



rate research

Read More

In this paper, we present a learning-based method to the keyframe-based video stylization that allows an artist to propagate the style from a few selected keyframes to the rest of the sequence. Its key advantage is that the resulting stylization is semantically meaningful, i.e., specific parts of moving objects are stylized according to the artists intention. In contrast to previous style transfer techniques, our approach does not require any lengthy pre-training process nor a large training dataset. We demonstrate how to train an appearance translation network from scratch using only a few stylized exemplars while implicitly preserving temporal consistency. This leads to a video stylization framework that supports real-time inference, parallel processing, and random access to an arbitrary output frame. It can also merge the content from multiple keyframes without the need to perform an explicit blending operation. We demonstrate its practical utility in various interactive scenarios, where the user paints over a selected keyframe and sees her style transferred to an existing recorded sequence or a live video stream.
Lighting plays a central role in conveying the essence and depth of the subject in a portrait photograph. Professional photographers will carefully control the lighting in their studio to manipulate the appearance of their subject, while consumer photographers are usually constrained to the illumination of their environment. Though prior works have explored techniques for relighting an image, their utility is usually limited due to requirements of specialized hardware, multiple images of the subject under controlled or known illuminations, or accurate models of geometry and reflectance. To this end, we present a system for portrait relighting: a neural network that takes as input a single RGB image of a portrait taken with a standard cellphone camera in an unconstrained environment, and from that image produces a relit image of that subject as though it were illuminated according to any provided environment map. Our method is trained on a small database of 18 individuals captured under different directional light sources in a controlled light stage setup consisting of a densely sampled sphere of lights. Our proposed technique produces quantitatively superior results on our datasets validation set compared to prior works, and produces convincing qualitative relighting results on a dataset of hundreds of real-world cellphone portraits. Because our technique can produce a 640 $times$ 640 image in only 160 milliseconds, it may enable interactive user-facing photographic applications in the future.
Generative image modeling techniques such as GAN demonstrate highly convincing image generation result. However, user interaction is often necessary to obtain the desired results. Existing attempts add interactivity but require either tailored architectures or extra data. We present a human-in-the-optimization method that allows users to directly explore and search the latent vector space of generative image modeling. Our system provides multiple candidates by sampling the latent vector space, and the user selects the best blending weights within the subspace using multiple sliders. In addition, the user can express their intention through image editing tools. The system samples latent vectors based on inputs and presents new candidates to the user iteratively. An advantage of our formulation is that one can apply our method to arbitrary pre-trained model without developing specialized architecture or data. We demonstrate our method with various generative image modeling applications, and show superior performance in a comparative user study with prior art iGAN.
In this paper, we present a fast exemplar-based image colorization approach using color embeddings named Color2Embed. Generally, due to the difficulty of obtaining input and ground truth image pairs, it is hard to train a exemplar-based colorization model with unsupervised and unpaired training manner. Current algorithms usually strive to achieve two procedures: i) retrieving a large number of reference images with high similarity for preparing training dataset, which is inevitably time-consuming and tedious; ii) designing complicated modules to transfer the colors of the reference image to the target image, by calculating and leveraging the deep semantic correspondence between them (e.g., non-local operation), which is computationally expensive during testing. Contrary to the previous methods, we adopt a self-augmented self-reference learning scheme, where the reference image is generated by graphical transformations from the original colorful one whereby the training can be formulated in a paired manner. Second, in order to reduce the process time, our method explicitly extracts the color embeddings and exploits a progressive style feature Transformation network, which injects the color embeddings into the reconstruction of the final image. Such design is much more lightweight and intelligible, achieving appealing performance with fast processing speed.
158 - Tung Nguyen , Kazuki Mori , 2016
In this paper, we present a novel approach that uses deep learning techniques for colorizing grayscale images. By utilizing a pre-trained convolutional neural network, which is originally designed for image classification, we are able to separate content and style of different images and recombine them into a single image. We then propose a method that can add colors to a grayscale image by combining its content with style of a color image having semantic similarity with the grayscale one. As an application, to our knowledge the first of its kind, we use the proposed method to colorize images of ukiyo-e a genre of Japanese painting?and obtain interesting results, showing the potential of this method in the growing field of computer assisted art.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا