Automatic clinical diagnosis of retinal diseases has emerged as a promising approach to facilitate discovery in areas with limited access to specialists. We propose a novel visual-assisted diagnosis hybrid model based on the support vector machine (SVM) and deep neural networks (DNNs). The model incorporates complementary strengths of DNNs and SVM. Furthermore, we present a new clinical retina label collection for ophthalmology incorporating 32 retina diseases classes. Using EyeNet, our model achieves 89.73% diagnosis accuracy and the model performance is comparable to the professional ophthalmologists.
Automatic clinical diagnosis of retinal diseases has emerged as a promising approach to facilitate discovery in areas with limited access to specialists. Based on the fact that fundus structure and vascular disorders are the main characteristics of retinal diseases, we propose a novel visual-assisted diagnosis hybrid model mixing the support vector machine (SVM) and deep neural networks (DNNs). Furthermore, we present a new clinical retina dataset, called EyeNet2, for ophthalmology incorporating 52 retina diseases classes. Using EyeNet2, our model achieves 90.43% diagnosis accuracy, and the model performance is comparable to the professional ophthalmologists.
This paper has proposed a new baseline deep learning model of more benefits for image classification. Different from the convolutional neural network(CNN) practice where filters are trained by back propagation to represent different patterns of an image, we are inspired by a method called PCANet in PCANet: A Simple Deep Learning Baseline for Image Classification? to choose filter vectors from basis vectors in frequency domain like Fourier coefficients or wavelets without back propagation. Researchers have demonstrated that those basis in frequency domain can usually provide physical insights, which adds to the interpretability of the model by analyzing the frequencies selected. Besides, the training process will also be more time efficient, mathematically clear and interpretable compared with the black-box training process of CNN.
In the real world, medical datasets often exhibit a long-tailed data distribution (i.e., a few classes occupy most of the data, while most classes have rarely few samples), which results in a challenging imbalance learning scenario. For example, there are estimated more than 40 different kinds of retinal diseases with variable morbidity, however with more than 30+ conditions are very rare from the global patient cohorts, which results in a typical long-tailed learning problem for deep learning-based screening models. In this study, we propose class subset learning by dividing the long-tailed data into multiple class subsets according to prior knowledge, such as regions and phenotype information. It enforces the model to focus on learning the subset-specific knowledge. More specifically, there are some relational classes that reside in the fixed retinal regions, or some common pathological features are observed in both the majority and minority conditions. With those subsets learnt teacher models, then we are able to distill the multiple teacher models into a unified model with weighted knowledge distillation loss. The proposed framework proved to be effective for the long-tailed retinal diseases recognition task. The experimental results on two different datasets demonstrate that our method is flexible and can be easily plugged into many other state-of-the-art techniques with significant improvements.
In this paper, a novel statistical metric learning is developed for spectral-spatial classification of the hyperspectral image. First, the standard variance of the samples of each class in each batch is used to decrease the intra-class variance within each class. Then, the distances between the means of different classes are used to penalize the inter-class variance of the training samples. Finally, the standard variance between the means of different classes is added as an additional diversity term to repulse different classes from each other. Experiments have conducted over two real-world hyperspectral image datasets and the experimental results have shown the effectiveness of the proposed statistical metric learning.
Creative plays a great important role in e-commerce for exhibiting products. Sellers usually create multiple creatives for comprehensive demonstrations, thus it is crucial to display the most appealing design to maximize the Click-Through Rate~(CTR). For this purpose, modern recommender systems dynamically rank creatives when a product is proposed for a user. However, this task suffers more cold-start problem than conventional products recommendation In this paper, we propose a hybrid bandit model with visual priors which first makes predictions with a visual evaluation, and then naturally evolves to focus on the specialities through the hybrid bandit model. Our contributions are three-fold: 1) We present a visual-aware ranking model (called VAM) that incorporates a list-wise ranking loss for ordering the creatives according to the visual appearance. 2) Regarding visual evaluations as a prior, the hybrid bandit model (called HBM) is proposed to evolve consistently to make better posteriori estimations by taking more observations into consideration for online scenarios. 3) A first large-scale creative dataset, CreativeRanking, is constructed, which contains over 1.7M creatives of 500k products as well as their real impression and click data. Extensive experiments have also been conducted on both our dataset and public Mushroom dataset, demonstrating the effectiveness of the proposed method.
C.-H. Huck Yang
,Jia-Hong Huang
,Fangyu Liu
.
(2018)
.
"A Novel Hybrid Machine Learning Model for Auto-Classification of Retinal Diseases"
.
C. H. Huck Yang
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا