Do you want to publish a course? Click here

Edge Cloud Offloading Algorithms: Issues, Methods, and Perspectives

161   0   0.0 ( 0 )
 Added by Jianli Pan
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Mobile devices supporting the Internet of Things (IoT), often have limited capabilities in computation, battery energy, and storage space, especially to support resource-intensive applications involving virtual reality (VR), augmented reality (AR), multimedia delivery and artificial intelligence (AI), which could require broad bandwidth, low response latency and large computational power. Edge cloud or edge computing is an emerging topic and technology that can tackle the deficiency of the currently centralized-only cloud computing model and move the computation and storage resource closer to the devices in support of the above-mentioned applications. To make this happen, efficient coordination mechanisms and offloading algorithms are needed to allow the mobile devices and the edge cloud to work together smoothly. In this survey paper, we investigate the key issues, methods, and various state-of-the-art efforts related to the offloading problem. We adopt a new characterizing model to study the whole process of offloading from mobile devices to the edge cloud. Through comprehensive discussions, we aim to draw an overall big picture on the existing efforts and research directions. Our study also indicates that the offloading algorithms in edge cloud have demonstrated profound potentials for future technology and application development.



rate research

Read More

78 - Zhuo Li , Xu Zhou , Yang Liu 2021
As novel applications spring up in future network scenarios, the requirements on network service capabilities for differentiated services or burst services are diverse. Aiming at the research of collaborative computing and resource allocation in edge scenarios, migrating computing tasks to the edge and cloud for computing requires a comprehensive consideration of energy consumption, bandwidth, and delay. Our paper proposes a collaboration mechanism based on computation offloading, which is flexible and customizable to meet the diversified requirements of differentiated networks. This mechanism handles the terminals differentiated computing tasks by establishing a collaborative computation offloading model between the cloud server and edge server. Experiments show that our method has more significant improvements over regular optimization algorithms, including reducing the execution time of computing tasks, improving the utilization of server resources, and decreasing the terminals energy consumption.
This letter studies an ultra-reliable low latency communication problem focusing on a vehicular edge computing network in which vehicles either fetch and synthesize images recorded by surveillance cameras or acquire the synthesized image from an edge computing server. The notion of risk-sensitive in financial mathematics is leveraged to define a reliability measure, and the studied problem is formulated as a risk minimization problem for each vehicles end-to-end (E2E) task fetching and offloading delays. Specifically, by resorting to a joint utility and policy estimation-based learning algorithm, a distributed risk-sensitive solution for task fetching and offloading is proposed. Simulation results show that our proposed solution achieves performance improvements up to 40% variance reduction and steeper distribution tail of the E2E delay over an averaged-based baseline.
102 - Jia Yan , Suzhi Bi , Lingjie Duan 2020
Provided with mobile edge computing (MEC) services, wireless devices (WDs) no longer have to experience long latency in running their desired programs locally, but can pay to offload computation tasks to the edge server. Given its limited storage space, it is important for the edge server at the base station (BS) to determine which service programs to cache by meeting and guiding WDs offloading decisions. In this paper, we propose an MEC service pricing scheme to coordinate with the service caching decisions and control WDs task offloading behavior. We propose a two-stage dynamic game of incomplete information to model and analyze the two-stage interaction between the BS and multiple associated WDs. Specifically, in Stage I, the BS determines the MEC service caching and announces the service program prices to the WDs, with the objective to maximize its expected profit under both storage and computation resource constraints. In Stage II, given the prices of different service programs, each WD selfishly decides its offloading decision to minimize individual service delay and cost, without knowing the other WDs desired program types or local execution delays. Despite the lack of WDs information and the coupling of all the WDs offloading decisions, we derive the optimal threshold-based offloading policy that can be easily adopted by the WDs in Stage II at the Bayesian equilibrium. Then, by predicting the WDs offloading equilibrium, we jointly optimize the BS pricing and service caching in Stage I via a low-complexity algorithm. In particular, we study both the uniform and differentiated pricing schemes. For differentiated pricing, we prove that the same price should be charged to the cached programs of the same workload.
While mobile edge computing (MEC) alleviates the computation and power limitations of mobile devices, additional latency is incurred when offloading tasks to remote MEC servers. In this work, the power-delay tradeoff in the context of task offloading is studied in a multi-user MEC scenario. In contrast with current system designs relying on average metrics (e.g., the average queue length and average latency), a novel network design is proposed in which latency and reliability constraints are taken into account. This is done by imposing a probabilistic constraint on users task queue lengths and invoking results from extreme value theory to characterize the occurrence of low-probability events in terms of queue length (or queuing delay) violation. The problem is formulated as a computation and transmit power minimization subject to latency and reliability constraints, and solved using tools from Lyapunov stochastic optimization. Simulation results demonstrate the effectiveness of the proposed approach, while examining the power-delay tradeoff and required computational resources for various computation intensities.
To overcome devices limitations in performing computation-intense applications, mobile edge computing (MEC) enables users to offload tasks to proximal MEC servers for faster task computation. However, current MEC system design is based on average-based metrics, which fails to account for the ultra-reliable low-latency requirements in mission-critical applications. To tackle this, this paper proposes a new system design, where probabilistic and statistical constraints are imposed on task queue lengths, by applying extreme value theory. The aim is to minimize users power consumption while trading off the allocated resources for local computation and task offloading. Due to wireless channel dynamics, users are re-associated to MEC servers in order to offload tasks using higher rates or accessing proximal servers. In this regard, a user-server association policy is proposed, taking into account the channel quality as well as the servers computation capabilities and workloads. By marrying tools from Lyapunov optimization and matching theory, a two-timescale mechanism is proposed, where a user-server association is solved in the long timescale while a dynamic task offloading and resource allocation policy is executed in the short timescale. Simulation results corroborate the effectiveness of the proposed approach by guaranteeing highly-reliable task computation and lower delay performance, compared to several baselines.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا