Do you want to publish a course? Click here

Key Enabling Technologies for Secure and Scalable Future Fog-IoT Architecture: A Survey

199   0   0.0 ( 0 )
 Added by Jianli Pan
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Fog or Edge computing has recently attracted broad attention from both industry and academia. It is deemed as a paradigm shift from the current centralized cloud computing model and could potentially bring a Fog-IoT architecture that would significantly benefit the future ubiquitous Internet of Things (IoT) systems and applications. However, it takes a series of key enabling technologies including emerging technologies to realize such a vision. In this article, we will survey these key enabling technologies with specific focuses on security and scalability, which are two very important and much-needed characteristics for future large-scale deployment. We aim to draw an overall big picture of the future for the research and development in these areas.



rate research

Read More

Virtual Reality (VR) has shown great potential to revolutionize the market by providing users immersive experiences with freedom of movement. Compared to traditional video streaming, VR is with ultra high-definition and dynamically changes with users head and eye movements, which poses significant challenges for the realization of such potential. In this paper, we provide a detailed and systematic survey of enabling technologies of virtual reality and its applications in Internet of Things (IoT). We identify major challenges of virtual reality on system design, view prediction, computation, streaming, and quality of experience evaluation. We discuss each of them by extensively surveying and reviewing related papers in the recent years. We also introduce several use cases of VR for IoT. Last, issues and future research directions are also identified and discussed.
As the ratification of 5G New Radio technology is being completed, enabling network architectures are expected to undertake a matching effort. Conventional cloud and edge computing paradigms may thus become insufficient in supporting the increasingly stringent operating requirements of emph{intelligent~Internet-of-Things (IoT) devices} that can move unpredictably and at high speeds. Complementing these, the concept of fog emerges to deploy cooperative cloud-like functions in the immediate vicinity of various moving devices, such as connected and autonomous vehicles, on the road and in the air. Envisioning gradual evolution of these infrastructures toward the increasingly denser geographical distribution of fog functionality, we in this work put forward the vision of dense moving fog for intelligent IoT applications. To this aim, we review the recent powerful enablers, outline the main challenges and opportunities, and corroborate the performance benefits of collaborative dense fog operation in a characteristic use case featuring a connected fleet of autonomous vehicles.
113 - Pan Wang , Shidong Liu , Feng Ye 2018
The smart grid utilizes many Internet of Things (IoT) applications to support its intelligent grid monitoring and control. The requirements of the IoT applications vary due to different tasks in the smart grid. In this paper, we propose a new computing paradigm to offer location-aware, latencysensitive monitoring and intelligent control for IoT applications in the smart grid. In particular, a new fog-based architecture and programming model is designed. Fog computing extends computing to the edge of a network, which has a perfect match to IoT applications. However, existing schemes can hardly satisfy the distributed coordination within fog computing nodes in the smart grid. In the proposed model, we introduce a new distributed fog computing coordinator, which periodically gathers information of fog computing nodes, e.g., remaining resources, tasks, etc. Moreover, the fog computing coordinator also manages jobs so that all computing nodes can collaborate on complex tasks. In addition, we construct a working prototype of intelligent electric vehicle service to evaluate the proposed model. Experiment results are also presented to demonstrate that our proposed model exceed the traditional fog computing schemes for IoT applications in the smart grid.
Driven by the emerging use cases in massive access future networks, there is a need for technological advancements and evolutions for wireless communications beyond the fifth-generation (5G) networks. In particular, we envisage the upcoming sixth-generation (6G) networks to consist of numerous devices demanding extremely high-performance interconnections even under strenuous scenarios such as diverse mobility, extreme density, and dynamic environment. To cater for such a demand, investigation on flexible and sustainable radio access network (RAN) techniques capable of supporting highly diverse requirements and massive connectivity is of utmost importance. To this end, this paper first outlines the key driving applications for 6G, including smart city and factory, which trigger the transformation of existing RAN techniques. We then examine and provide in-depth discussions on several critical performance requirements (i.e., the level of flexibility, the support for massive interconnectivity, and energy efficiency), issues, enabling technologies, and challenges in designing 6G massive RANs. We conclude the article by providing several artificial-intelligence-based approaches to overcome future challenges.
Integrating Internet of Things (IoT) and edge computing for Edge-IoT systems, converged with machine intelligence, has the potentials of enabling a wide range of applications in smart homes, factories and cities. Edge-IoT can connect many diverse devices and the IoT asset owners can run heterogeneous IoT systems supported by various vendors or service providers (SPs), using either cloud or local edge computing (or both) for resource assistance. The existing methods typically manage the systems as separate vertical silos, or in a vendor/SP-centric way, which suffers from significant challenges. In this paper, we present a novel owner-centric management paradigm named ORCA to address the gaps left by the owner-centric paradigm and empower the IoT assets owners to effectively identify and mitigate potential issues in their own network premises, regardless the vendors/SPs situations. ORCA aims to be scalable and extensible in assisting IoT owners to perform intelligent management through a behavior-oriented and data-driven approach. ORCA is an ongoing project and the preliminary results indicate that it can significantly empower the IoT systems owners to better manage their IoT assets.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا