Do you want to publish a course? Click here

The progeny of a Cosmic Titan: a massive multi-component proto-supercluster in formation at z=2.45 in VUDS

82   0   0.0 ( 0 )
 Added by Olga Cucciati Dott.
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

[Abridged] We unveil the complex shape of a proto-supercluster at z~2.45 in the COSMOS field using the spectroscopic redshifts of the VIMOS Ultra-Deep Survey (VUDS), complemented by the zCOSMOS-Deep sample and high-quality photometric redshifts. The method relies on a 2D Voronoi tessellation in overlapping redshift slices that is converted into a 3D density field. The galaxy distribution is constructed using a statistical treatment of spectroscopic and photometric redshifts. We identify a proto-supercluster, dubbed Hyperion for its immense size and mass, which extends over a volume of ~60x60x150 comoving Mpc^3 and has an estimated total mass of ~4.8x 10^15 M_sun. This immensely complex structure contains at least 7 density peaks within 2.4 < z < 2.5, connected by filaments. Based on the peaks average matter density, we estimate their total mass, M_tot, and find a range of masses from ~0.1x10^14 M_sun to ~2.7x10^14 M_sun. By using spectroscopic members of each peak, we obtain the velocity dispersion of the galaxies in the peaks, and then their virial mass M_vir (under the strong assumption that they are virialised). The agreement between M_vir and M_tot is surprisingly good, considering that almost all the peaks are probably not yet virialised. According to the spherical collapse model, the peaks have already started or are about to start collapsing, and they are all predicted to be virialised by redshift z~0.8-1.6. We finally perform a careful comparison with the literature, given that smaller components of this proto-supercluster had previously been identified using heterogeneous galaxy samples. With VUDS, we obtain a panoramic view of this large structure, that encompasses, connects, and considerably expands in a homogeneous way on all previous detections of the various sub-components. This provides us the unique possibility to study a rich supercluster in formation.



rate research

Read More

152 - C. Diener , S. Lilly , C. Ledoux 2014
We present the spectroscopic confirmation of a $z=2.45$ proto-cluster. Its member galaxies lie within a radius of 1.4Mpc (physical) on the sky and within $Delta v pm 700$km/s along the line of sight. We estimate an overdensity of 10, suggesting that the structure has made the turn-around but is not assembled yet. Comparison to the Millennium simulation suggests that analogous structures evolve into $10^{14}-10^{15}$M$_{odot}$/h type dark matter haloes by $z=0$ qualifying the notion of proto-cluster. The search for the complete census of mock progenitor galaxies at $zsim2.5$ of these massive $z=0$ mock clusters reveals that they are widely spread over areas with a diameter of 3-20Mpc. This suggests that the optical selection of such proto-clusters can result in a rich diversity regarding their $z=0$ descendants. We also searched for signs of environmental differentiation in this proto-cluster. Whilst we see a weak trend for more massive and more quiescent galaxies in the proto-cluster, this is not statistically significant.
204 - E. Pompei , C. Adami , D. Eckert 2015
The XXL Survey is the largest homogeneous and contiguous survey carried out with XMM-Newton. Covering an area of 50 square degrees distributed over two fields, it primarily investigates the large-scale structures of the Universe using the distribution of galaxy clusters and active galactic nuclei as tracers of the matter distribution. Given its depth and sky coverage, XXL is particularly suited to systematically unveiling the clustering of X-ray clusters and to identifying superstructures in a homogeneous X-ray sample down to the typical mass scale of a local massive cluster. A friends-of-friends algorithm in three-dimensional physical space was run to identify large-scale structures. In this paper we report the discovery of the highest redshift supercluster of galaxies found in the XXL Survey. We describe the X-ray properties of the clusters members of the structure and the optical follow-up. The newly discovered supercluster is composed of six clusters of galaxies at a median redshift z around 0.43 and distributed across approximately 30 by 15 arc minutes (10 by 5 Mpc on sky) on the sky. This structure is very compact with all the clusters residing in one XMM pointing; for this reason this is the first supercluster discovered with the XXL Survey. Spectroscopic follow-up with WHT (William Herschel Telescope) and NTT (New Technology Telescope) confirmed a median redshift of z = 0.43. An estimate of the X-ray mass and luminosity of this supercluster and of its total gas mass put XLSSC-e at the average mass range of superclusters; its appearance, with two members of equal size, is quite unusual with respect to other superclusters and provides a unique view of the formation process of a massive structure.
228 - C.M. Casey , A. Cooray , P. Capak 2015
Numerical simulations of cosmological structure formation show that the Universes most massive clusters, and the galaxies living in those clusters, assemble rapidly at early times (2.5 < z < 4). While more than twenty proto-clusters have been observed at z > 2 based on associations of 5-40 galaxies around rare sources, the observational evidence for rapid cluster formation is weak. Here we report observations of an asymmetric, filamentary structure at z = 2.47 containing seven starbursting, submillimeter-luminous galaxies and five additional AGN within a comoving volume of 15000 Mpc$^{3}$. As the expected lifetime of both the luminous AGN and starburst phase of a galaxy is ~100 Myr, we conclude that these sources were likely triggered in rapid succession by environmental factors, or, alternatively, the duration of these cosmologically rare phenomena is much longer than prior direct measurements suggest. The stellar mass already built up in the structure is $sim10^{12}M_{odot}$ and we estimate that the cluster mass will exceed that of the Coma supercluster at $z sim 0$. The filamentary structure is in line with hierarchical growth simulations which predict that the peak of cluster activity occurs rapidly at z > 2.
Using new spectroscopic observations obtained as part of the VIMOS Ultra-Deep Survey (VUDS), we perform a systematic search for overdense environments in the early universe ($z>2$) and report here on the discovery of Cl J0227-0421, a massive protocluster at $z=3.29$. This protocluster is characterized by both the large overdensity of spectroscopically confirmed members, $delta_{gal}=10.5pm2.8$, and a significant overdensity in photometric redshift members. The halo mass of this protocluster is estimated, by a variety of methods, to be roughly $3times10^{14}$ $mathcal{M}_{odot}$ at $zsim3.3$, which, evolved to $z=0$ results in a halo mass rivaling or exceeding that of the Coma cluster. The properties of 19 spectroscopically confirmed member galaxies are compared with a large sample of VUDS/VVDS galaxies in lower density field environments at similar redshifts. We find tentative evidence for an excess of redder, brighter, and more massive galaxies within the confines of the protocluster relative to the field population, which suggests that we may be observing the beginning of environmentally-induced quenching. The properties of these galaxies are investigated, including a discussion of the brightest protocluster galaxy which appears to be undergoing vigorous coeval nuclear and starburst activity. The remaining member galaxies appear to have characteristics which are largely similar to the field population. Though we find weaker evidence of the suppression of the median star formation rates amongst and differences in stacked spectra of member galaxies with respect to the field, we defer any conclusions of these trends to future work with the ensemble of protostructures that are found in the full VUDS sample.
[Abridged] We characterise a massive proto-cluster at z=2.895 that we found in the COSMOS field using the spectroscopic sample of the VIMOS Ultra-Deep Survey (VUDS). This is one of the rare structures at z~3 not identified around AGNs or radio galaxies, so it is an ideal laboratory to study galaxy formation in dense environments. The structure comprises 12 galaxies with secure spectroscopic redshift in an area of 7x8, in a z bin of Dz=0.016. The measured galaxy number overdensity is delta_g=12+/-2. This overdensity has total mass of M~8.1x10^(14)M_sun in a volume of 13x15x17 Mpc^3. Simulations indicate that such an overdensity at z~2.9 is a proto-cluster that will collapse in a cluster of total mass M~2.5x10^(15)M_sun at z=0. We compare the properties of the galaxies within the overdensity with a control sample at the same z but outside the overdensity. We did not find any statistically significant difference between the properties (stellar mass, SFR, sSFR, NUV-r, r-K) of the galaxies inside and outside the overdensity. The stacked spectrum of galaxies in the overdensity background shows a significant absorption feature at the wavelength of Lya redshifted at z=2.895 (lambda=4736 A), with a rest frame EW = 4+/- 1.4 A. Stacking only background galaxies without intervening sources at z~2.9 along their line of sight, we find that this absorption feature has a rest frame EW of 10.8+/-3.7 A, with a detection S/N of ~4. These EW values imply a high column density (N(HI)~3-20x10^(19)cm^(-2)), consistent with a scenario where such absorption is due to intervening cold gas streams, falling into the halo potential wells of the proto-cluster galaxies. However, we cannot exclude the hypothesis that this absorption is due to the diffuse gas within the overdensity.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا