No Arabic abstract
Entanglement is the key feature of many-body quantum systems, and the development of new tools to probe it in the laboratory is an outstanding challenge. Measuring the entropy of different partitions of a quantum system provides a way to probe its entanglement structure. Here, we present and experimentally demonstrate a new protocol for measuring entropy, based on statistical correlations between randomized measurements. Our experiments, carried out with a trapped-ion quantum simulator, prove the overall coherent character of the system dynamics and reveal the growth of entanglement between its parts - both in the absence and presence of disorder. Our protocol represents a universal tool for probing and characterizing engineered quantum systems in the laboratory, applicable to arbitrary quantum states of up to several tens of qubits.
The control of many-body quantum dynamics in complex systems is a key challenge in the quest to reliably produce and manipulate large-scale quantum entangled states. Recently, quench experiments in Rydberg atom arrays (Bluvstein et. al., arXiv:2012.12276) demonstrated that coherent revivals associated with quantum many-body scars can be stabilized by periodic driving, generating stable subharmonic responses over a wide parameter regime. We analyze a simple, related model where these phenomena originate from spatiotemporal ordering in an effective Floquet unitary, corresponding to discrete time-crystalline (DTC) behavior in a prethermal regime. Unlike conventional DTC, the subharmonic response exists only for Neel-like initial states, associated with quantum scars. We predict robustness to perturbations and identify emergent timescales that could be observed in future experiments. Our results suggest a route to controlling entanglement in interacting quantum systems by combining periodic driving with many-body scars.
We discuss monitoring the time evolution of an analog quantum simulator via a quantum non-demolition (QND) coupling to an auxiliary `clock qubit. The QND variable of interest is the `energy of the quantum many-body system, represented by the Hamiltonian of the quantum simulator. We describe a physical implementation of the underlying QND Hamiltonian for Rydberg atoms trapped in tweezer arrays using laser dressing schemes for a broad class of spin models. As an application, we discuss a quantum protocol for measuring the spectral form factor of quantum many-body systems, where the aim is to identify signatures of ergodic vs. non-ergodic dynamics, which we illustrate for disordered 1D Heisenberg and Floquet spin models on Rydberg platforms. Our results also provide the physical ingredients for running quantum phase estimation protocols for measurement of energies, and preparation of energy eigenstates for a specified spectral resolution on an analog quantum simulator.
The task of classifying the entanglement properties of a multipartite quantum state poses a remarkable challenge due to the exponentially increasing number of ways in which quantum systems can share quantum correlations. Tackling such challenge requires a combination of sophisticated theoretical and computational techniques. In this paper we combine machine-learning tools and the theory of quantum entanglement to perform entanglement classification for multipartite qubit systems in pure states. We use a parameterisation of quantum systems using artificial neural networks in a restricted Boltzmann machine (RBM) architecture, known as Neural Network Quantum States (NNS), whose entanglement properties can be deduced via a constrained, reinforcement learning procedure. In this way, Separable Neural Network States (SNNS) can be used to build entanglement witnesses for any target state.
We formulate dynamical phase transitions in subsystems embedded in larger quantum systems. Introducing the entanglement echo as an overlap of the initial and instantaneous entanglement ground states, we show its analytic structure after a quench provides natural definition of dynamical phase transitions in the subsystem. These transitions come in two varieties, the entanglement-type transitions and the bulk-type Loschmidt transitions. The entanglement-type transitions arise from periodic reorganization of quantum correlations between the subsystem and its environment, manifesting in instantaneous entanglement ground state degeneracies. Furthermore, the entanglement echo distinguishes the direction of the quench, resolves spatially distinct dynamical phase transitions for non-uniform quenches and give rise to sharply-defined transitions for mixed initial states. We propose an experimental probe to identify entanglement-type transitions through temporal changes in subsystem fluctuations.
Non-unitary evolution can give rise to novel steady states classified by their entanglement properties. In this work, we aim to understand its interplay with long-range hopping that decays with $r^{-alpha}$ in free-fermion systems. We first study two solvable Brownian models with long-range non-unitary dynamics: a large-$N$ SYK$_2$ chain and a single-flavor fermion chain and we show that they share the same phase diagram. When $alpha>0.5$, we observe two critical phases with subvolume entanglement scaling: (i) $alpha>1.5$, a logarithmic phase with dynamical exponent $z=1$ and logarithmic subsystem entanglement, and (ii) $0.5<alpha<1.5$, a fractal phase with $z=frac{2alpha-1}{2}$ and subsystem entanglement $S_Apropto L_A^{1-z}$, where $L_A$ is the length of the subsystem $A$. These two phases cannot be distinguished by the purification dynamics, in which the entropy always decays as $L/T$. We then confirm that the results are also valid for the static SYK$_2$ chain, indicating the phase diagram is universal for general free-fermion systems. We also discuss phase diagrams in higher dimensions and the implication in measurement-induced phase transitions.