Do you want to publish a course? Click here

Implementation of a hybrid scheme for coherent plug-and-play quantum key distribution

153   0   0.0 ( 0 )
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We experimentally demonstrate a hybrid configuration for Quantum Key Distribution, that combines the simplicity of Distributed Phase Reference protocols with the self-referencing features and polarization insensitivity of the so-called Plug & Play system. Additionally, all the components are arranged in a server-client scheme to allow for practical key distribution. Blank, coherent pulse pair trains are generated at the reception end of the link by means of a pulse sequence and an unbalanced interferometer, and sent to the other end. The emitter writes the qubits by erasing one of the pulses from the pair as in a Coherent-One Way protocol. Detection, as well as eavesdropping monitoring is performed at the receiver side, using the same interferometer that was used to generate the initial phase-referenced pulses.

rate research

Read More

We propose and experimentally demonstrate a plug-and-play, practical, and enabling method allowing to synchronize the building blocks of a quantum network in an all-optical way. Our scheme relies on mature and reliable classical telecommunication and non-linear optical technologies and can be implemented in a universal way with off-the-shelf components. Compared to already reported solutions, it allows achieving high-quality synchronization compatible with high network-operation rate and is free from opto-electronic jitters affecting servo-loop based configurations. We test our scheme with a genuine quantum optical method in terms of the interference between two photons coming from two remotely synchronized sources spaced by distances of up to 100 km. Measured visibilities well above 90% confirm the validity of our approach. Due its simplicity and high-quality performance, our scheme paves the way for the synchronization of long-distance quantum networks based on fibre, free-space, as well as hybrid solutions.
A security evaluation against the finite-key-size effect was performed for a commercial plug-and-play quantum key distribution (QKD) system. We demonstrate the ability of an eavesdropper to force the system to distill key from a smaller length of sifted-key. We also derive a key-rate equation that is specific for this system. This equation provides bounds above the upper bound of secure key under finite-key-size analysis. From this equation and our experimental data, we show that the keys that have been distilled from the smaller sifted-key size fall above our bound. Thus, their security is not covered by finite-key-size analysis. Experimentally, we could consistently force the system to generate the key outside of the bound. We also test manufacturers software update. Although all the keys after the patch fall under our bound, their security cannot be guaranteed under this analysis. Our methodology can be used for security certification and standardization of QKD systems.
We have implemented an experimental set-up in order to demonstrate the feasibility of time-coding protocols for quantum key distribution. Alice produces coherent 20 ns faint pulses of light at 853 nm. They are sent to Bob with delay 0 ns (encoding bit 0) or 10 ns (encoding bit 1). Bob directs at random the received pulses to two different arms. In the first one, a 300 ps resolution Si photon-counter allows Bob to precisely measure the detection times of each photon in order to establish the key. Comparing them with the emission times of the pulses sent by Alice allows to evaluate the quantum bit error rate (QBER). The minimum obtained QBER is 1.62 %. The possible loss of coherence in the set-up can be exploited by Eve to eavesdrop the line. Therefore, the second arm of Bob set-up is a Mach-Zender interferometer with a 10 ns propagation delay between the two path. Contrast measurement of the output beams allows to measure the autocorrelation function of the received pulses that characterizes their average coherence. In the case of an ideal set-up, the value expected with the pulses sent by Alice is 0.576. The experimental value of the pulses autocorrelation function is found to be 0.541. Knowing the resulting loss of coherence and the measured QBER, one can evaluate the mutual information between Alice and Eve and the mutual information between Alice and Bob, in the case of intercept-resend attacks and in the case of attacks with intrication. With our values, Bob has an advantage on Eve of 0.43 bit per pulse. The maximum possible QBER corresponding to equal informations for Bob and Eve is 5.8 %. With the usual attenuation of fibres at 850 nm, it shows that secure key distribution is possible up to a distance of 2.75 km, which is sufficient for local links.
Signal state preparation in quantum key distribution schemes can be realized using either an active or a passive source. Passive sources might be valuable in some scenarios; for instance, in those experimental setups operating at high transmission rates, since no externally driven element is required. Typical passive transmitters involve parametric down-conversion. More recently, it has been shown that phase-randomized coherent pulses also allow passive generation of decoy states and Bennett-Brassard 1984 (BB84) polarization signals, though the combination of both setups in a single passive source is cumbersome. In this paper, we present a complete passive transmitter that prepares decoy-state BB84 signals using coherent light. Our method employs sum-frequency generation together with linear optical components and classical photodetectors. In the asymptotic limit of an infinite long experiment, the resulting secret key rate (per pulse) is comparable to the one delivered by an active decoy-state BB84 setup with an infinite number of decoy settings.
In this paper we present finite-key security analysis for quantum key distribution protocol based on weak coherent (in particular phase-coded) states using a fully quantum asymptotic equipartition property technique. This work is the extension of the proof for non-orthogonal states on the coherent states. Below we consider two types of attacks each of them maximizes either Alice-Eve or Eve-Bob mutual information. The cornerstone of this paper is that we do assume the possibility of crucial intercept-resend attack based on errorless unambiguous state discrimination measurement. We demonstrate that Holevo bound always gives the highest mutual information between Alice and Eve regardless particular kind of isometry. As the main result we present the dependence of the extracted secret key length. As the example we implement the proposed analysis to the subcarrier wave quantum key distribution protocol.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا