Do you want to publish a course? Click here

Observation of inclined EeV air showers with the radio detector of the Pierre Auger Observatory

117   0   0.0 ( 0 )
 Added by Tim Huege
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

With the Auger Engineering Radio Array (AERA) of the Pierre Auger Observatory, we have observed the radio emission from 561 extensive air showers with zenith angles between 60$^circ$ and 84$^circ$. In contrast to air showers with more vertical incidence, these inclined air showers illuminate large ground areas of several km$^2$ with radio signals detectable in the 30 to 80,MHz band. A comparison of the measured radio-signal amplitudes with Monte Carlo simulations of a subset of 50 events for which we reconstruct the energy using the Auger surface detector shows agreement within the uncertainties of the current analysis. As expected for forward-beamed radio emission undergoing no significant absorption or scattering in the atmosphere, the area illuminated by radio signals grows with the zenith angle of the air shower. Inclined air showers with EeV energies are thus measurable with sparse radio-antenna arrays with grid sizes of a km or more. This is particularly attractive as radio detection provides direct access to the energy in the electromagnetic cascade of an air shower, which in case of inclined air showers is not accessible by arrays of particle detectors on the ground.



rate research

Read More

We describe the method devised to reconstruct inclined cosmic-ray air showers with zenith angles greater than $60^circ$ detected with the surface array of the Pierre Auger Observatory. The measured signals at the ground level are fitted to muon density distributions predicted with atmospheric cascade models to obtain the relative shower size as an overall normalization parameter. The method is evaluated using simulated showers to test its performance. The energy of the cosmic rays is calibrated using a sub-sample of events reconstructed with both the fluorescence and surface array techniques. The reconstruction method described here provides the basis of complementary analyses including an independent measurement of the energy spectrum of ultra-high energy cosmic rays using very inclined events collected by the Pierre Auger Observatory.
121 - D. Newton 2007
The water-Cherenkov tanks of the Pierre Auger Observatory can detect particles at all zenith angles and are therefore well-suited for the study of inclined and horizontal air showers (60 - 90 degrees). Such showers are characterised by a dominance of the muonic component at ground, and by a very elongated and asymmetrical footprint which can even exhibit a lobular structure due to the bending action of the geomagnetic field. Dedicated algorithms for the selection and reconstruction of such events, as well as the corresponding acceptance calculation, have been set up on basis of muon maps obtained from shower simulations.
The Pierre Auger Observatory is a hybrid detector for ultra-high energy cosmic rays. It combines a surface array to measure secondary particles at ground level together with a fluorescence detector to measure the development of air showers in the atmosphere above the array. The fluorescence detector comprises 24 large telescopes specialized for measuring the nitrogen fluorescence caused by charged particles of cosmic ray air showers. In this paper we describe the components of the fluorescence detector including its optical system, the design of the camera, the electronics, and the systems for relative and absolute calibration. We also discuss the operation and the monitoring of the detector. Finally, we evaluate the detector performance and precision of shower reconstructions.
161 - P. Abreu , M. Aglietta , M. Ahlers 2012
The Pierre Auger Observatory is exploring the potential of the radio detection technique to study extensive air showers induced by ultra-high energy cosmic rays. The Auger Engineering Radio Array (AERA) addresses both technological and scientific aspects of the radio technique. A first phase of AERA has been operating since September 2010 with detector stations observing radio signals at frequencies between 30 and 80 MHz. In this paper we present comparative studies to identify and optimize the antenna design for the final configuration of AERA consisting of 160 individual radio detector stations. The transient nature of the air shower signal requires a detailed description of the antenna sensor. As the ultra-wideband reception of pulses is not widely discussed in antenna literature, we review the relevant antenna characteristics and enhance theoretical considerations towards the impulse response of antennas including polarization effects and multiple signal reflections. On the basis of the vector effective length we study the transient response characteristics of three candidate antennas in the time domain. Observing the variation of the continuous galactic background intensity we rank the antennas with respect to the noise level added to the galactic signal.
The Pierre Auger Observatory is being used to study cosmic rays with energies larger than 10 EeV. An essential quantity that must be deduced from data is the lateral distribution function (LDF). Knowledge of the LDF is important for the reconstruction of the shower core and the shower direction. Here we describe how the LDF is measured using the large sample of events recorded with the surface detector (SD) array and with a small sample observed with the fluorescence detectors (FD). For hybrid events, in which SD and FD measurements of the same shower are available, the core position is much better constrained than for SD-only events, thus providing an important cross-check on the LDF determined from SD measurements alone.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا