No Arabic abstract
The water-Cherenkov tanks of the Pierre Auger Observatory can detect particles at all zenith angles and are therefore well-suited for the study of inclined and horizontal air showers (60 - 90 degrees). Such showers are characterised by a dominance of the muonic component at ground, and by a very elongated and asymmetrical footprint which can even exhibit a lobular structure due to the bending action of the geomagnetic field. Dedicated algorithms for the selection and reconstruction of such events, as well as the corresponding acceptance calculation, have been set up on basis of muon maps obtained from shower simulations.
We describe the method devised to reconstruct inclined cosmic-ray air showers with zenith angles greater than $60^circ$ detected with the surface array of the Pierre Auger Observatory. The measured signals at the ground level are fitted to muon density distributions predicted with atmospheric cascade models to obtain the relative shower size as an overall normalization parameter. The method is evaluated using simulated showers to test its performance. The energy of the cosmic rays is calibrated using a sub-sample of events reconstructed with both the fluorescence and surface array techniques. The reconstruction method described here provides the basis of complementary analyses including an independent measurement of the energy spectrum of ultra-high energy cosmic rays using very inclined events collected by the Pierre Auger Observatory.
With the Auger Engineering Radio Array (AERA) of the Pierre Auger Observatory, we have observed the radio emission from 561 extensive air showers with zenith angles between 60$^circ$ and 84$^circ$. In contrast to air showers with more vertical incidence, these inclined air showers illuminate large ground areas of several km$^2$ with radio signals detectable in the 30 to 80,MHz band. A comparison of the measured radio-signal amplitudes with Monte Carlo simulations of a subset of 50 events for which we reconstruct the energy using the Auger surface detector shows agreement within the uncertainties of the current analysis. As expected for forward-beamed radio emission undergoing no significant absorption or scattering in the atmosphere, the area illuminated by radio signals grows with the zenith angle of the air shower. Inclined air showers with EeV energies are thus measurable with sparse radio-antenna arrays with grid sizes of a km or more. This is particularly attractive as radio detection provides direct access to the energy in the electromagnetic cascade of an air shower, which in case of inclined air showers is not accessible by arrays of particle detectors on the ground.
Cosmic rays arriving at Earth collide with the upper parts of the atmosphere, thereby inducing extensive air showers. When secondary particles from the cascade arrive at the ground, they are measured by surface detector arrays. We describe the methods applied to the measurements of the surface detector of the Pierre Auger Observatory to reconstruct events with zenith angles less than $60^circ$ using the timing and signal information recorded using the water-Cherenkov detector stations. In addition, we assess the accuracy of these methods in reconstructing the arrival directions of the primary cosmic ray particles and the sizes of the induced showers.
The Surface Detector of the Pierre Auger Observatory will consist of 1600 water Cherenkov tanks sampling ground particles of air showers produced by energetic cosmic rays. The arrival times are obtained from GPS and power is provided by solar panels. The construction of the array is nearly completed and a large number of detectors has been operational for more than three years. In this paper the performance of different components of the detectors are discussed. The accuracy of the signal measurement and the trigger stability are presented. The performance of the solar power system and other hardware, as well as the water purity and its long-term stability are discussed.
The Pierre Auger Observatory is designed to study cosmic rays with energies greater than 10^{19} eV. Two sites are envisaged for the observatory, one in each hemisphere, for complete sky coverage. The southern site of the Auger Observatory, now approaching completion in Mendoza, Argentina, features an array of 1600 water-Cherenkov surface detector stations covering 3000 km^2, together with 24 fluorescence telescopes to record the air shower cascades produced by these particles. The two complementary detector techniques together with the large collecting area form a powerful instrument for these studies. Although construction is not yet complete, the Auger Observatory has been taking data stably since January 2004 and the first physics results are being published. In this paper we describe the design features and technical characteristics of the surface detector stations of the Pierre Auger Observatory.