Do you want to publish a course? Click here

Bridging Star-Forming Galaxy and AGN Ultraviolet Luminosity Functions at $z=4$ with the SHELA Wide-Field Survey

53   0   0.0 ( 0 )
 Added by Matthew Stevans
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a joint analysis of the rest-frame ultraviolet (UV) luminosity functions of continuum-selected star-forming galaxies and galaxies dominated by active galactic nuclei (AGNs) at $z sim$ 4. These 3,740 $z sim$ 4 galaxies are selected from broad-band imaging in nine photometric bands over 18 deg$^2$ in the textit{Spitzer}/HETDEX Exploratory Large Area Survey (SHELA) field. The large area and moderate depth of our survey provide a unique view of the intersection between the bright end of the galaxy UV luminosity function (M$_{AB}<-$22) and the faint end of the AGN UV luminosity function. We do not separate AGN-dominated galaxies from star-formation-dominated galaxies, but rather fit both luminosity functions simultaneously. These functions are best fit with a double power-law (DPL) for both the galaxy and AGN components, where the galaxy bright-end slope has a power-law index of $-3.80pm0.10$, and the corresponding AGN faint-end slope is $alpha_{AGN} = -1.49^{+0.30}_{-0.21}$. We cannot rule out a Schechter-like exponential decline for the galaxy UV luminosity function, and in this scenario the AGN luminosity function has a steeper faint-end slope of $-2.08^{+0.18}_{-0.11}$. Comparison of our galaxy luminosity function results with a representative cosmological model of galaxy formation suggests that the molecular gas depletion time must be shorter, implying that star formation is more efficient in bright galaxies at $z=4$ than at the present day. If the galaxy luminosity function does indeed have a power-law shape at the bright end, the implied ionizing emissivity from AGNs is not inconsistent with previous observations. However, if the underlying galaxy distribution is Schechter, it implies a significantly higher ionizing emissivity from AGNs at this epoch.



rate research

Read More

481 - X. Dai 2009
We present galaxy luminosity functions at 3.6, 4.5, 5.8, and 8.0 micron measured by combining photometry from the IRAC Shallow Survey with redshifts from the AGN and Galaxy Evolution Survey of the NOAO Deep Wide-Field Survey Bootes field. The well-defined IRAC samples contain 3800-5800 galaxies for the 3.6-8.0 micron bands with spectroscopic redshifts and z < 0.6. We obtained relatively complete luminosity functions in the local redshift bin of z < 0.2 for all four IRAC channels that are well fit by Schechter functions. We found significant evolution in the luminosity functions for all four IRAC channels that can be fit as an evolution in M* with redshift, Delta M* = Qz. While we measured Q=1.2pm0.4 and 1.1pm0.4 in the 3.6 and 4.5 micron bands consistent with the predictions from a passively evolving population, we obtained Q=1.8pm1.1 in the 8.0 micron band consistent with other evolving star formation rate estimates. We compared our LFs with the predictions of semi-analytical galaxy formation and found the best agreement at 3.6 and 4.5 micron, rough agreement at 8.0 micron, and a large mismatch at 5.8 micron. These models also predicted a comparable Q value to our luminosity functions at 8.0 micron, but predicted smaller values at 3.6 and 4.5 micron. We also measured the luminosity functions separately for early and late-type galaxies. While the luminosity functions of late-type galaxies resemble those for the total population, the luminosity functions of early-type galaxies in the 3.6 and 4.5 micron bands indicate deviations from the passive evolution model, especially from the measured flat luminosity density evolution. Combining our estimates with other measurements in the literature, we found (53pm18)% of the present stellar mass of early-type galaxies has been assembled at z=0.7.
We present new measurements of rest-UV luminosity functions and angular correlation functions from 4,100,221 galaxies at z~2-7 identified in the Subaru/Hyper Suprime-Cam survey and CFHT Large-Area U-band Survey. The obtained luminosity functions at z~4-7 cover a very wide UV luminosity range of ~0.002-2000L*uv combined with previous studies, revealing that the dropout luminosity function is a superposition of the AGN luminosity function dominant at Muv<-24 mag and the galaxy luminosity function dominant at Muv>-22 mag, consistent with galaxy fractions based on 1037 spectroscopically-identified sources. Galaxy luminosity functions estimated from the spectroscopic galaxy fractions show the bright end excess beyond the Schechter function at >2sigma levels, which is possibly made by inefficient mass quenching, low dust obscuration, and/or hidden AGN activity. By analyzing the correlation functions at z~2-6 with halo occupation distribution models, we find a weak redshift evolution (within 0.3 dex) of the ratio of the star formation rate (SFR) to the dark matter accretion rate, SFR/(dMh/dt), indicating the almost constant star formation efficiency at z~2-6, as suggested by our earlier work at z~4-7. Meanwhile, the ratio gradually increases with decreasing redshift at z<5 within 0.3 dex, which quantitatively reproduces the redshift evolution of the cosmic SFR density, suggesting that the evolution is primarily driven by the increase of the halo number density due to the structure formation, and the decrease of the accretion rate due to the cosmic expansion. Extrapolating this calculation to higher redshifts assuming the constant efficiency suggests a rapid decrease of the SFR density at z>10 with $rho_mathrm{SFR}propto10^{-0.5(1+z)}$, which will be directly tested with JWST.
We present the results of a new study of dust attenuation at redshifts $3 < z < 4$ based on a sample of $236$ star-forming galaxies from the VANDELS spectroscopic survey. Motivated by results from the First Billion Years (FiBY) simulation project, we argue that the intrinsic spectral energy distributions (SEDs) of star-forming galaxies at these redshifts have a self-similar shape across the mass range $8.2 leq$ log$(M_{star}/M_{odot}) leq 10.6$ probed by our sample. Using FiBY data, we construct a set of intrinsic SED templates which incorporate both detailed star formation and chemical abundance histories, and a variety of stellar population synthesis (SPS) model assumptions. With this set of intrinsic SEDs, we present a novel approach for directly recovering the shape and normalization of the dust attenuation curve. We find, across all of the intrinsic templates considered, that the average attenuation curve for star-forming galaxies at $zsimeq3.5$ is similar in shape to the commonly-adopted Calzetti starburst law, with an average total-to-selective attenuation ratio of $R_{V}=4.18pm0.29$. We show that the optical attenuation ($A_V$) versus stellar mass ($M_{star}$) relation predicted using our method is consistent with recent ALMA observations of galaxies at $2<z<3$ in the emph{Hubble} emph{Ultra} emph{Deep} emph{Field} (HUDF), as well as empirical $A_V - M_{star}$ relations predicted by a Calzetti-like law. Our results, combined with other literature data, suggest that the $A_V - M_{star}$ relation does not evolve over the redshift range $0<z<5$, at least for galaxies with log$(M_{star}/M_{odot}) gtrsim 9.5$. Finally, we present tentative evidence which suggests that the attenuation curve may become steeper at log$(M_{star}/M_{odot}) lesssim 9.0$.
We present mid-infrared (MIR) luminosity functions (LFs) of local star-forming (SF) galaxies in the AKARI NEP-Wide Survey field. In order to derive more accurate luminosity function, we used spectroscopic sample only. Based on the NEP-Wide point source catalogue containing a large number of infrared (IR) sources distributed over the wide (5.4 sq. deg.) field, we incorporated the spectroscopic redshift data for about 1790 selected targets obtained by optical follow-up surveys with MMT/Hectospec and WIYN/Hydra. The AKARI continuous 2 to 24 micron wavelength coverage as well as photometric data from optical u band to NIR H-band with the spectroscopic redshifts for our sample galaxies enable us to derive accurate spectral energy distributions (SEDs) in the mid-infrared. We carried out SED fit analysis and employed 1/Vmax method to derive the MIR (8, 12, and 15 micron rest-frame) luminosity functions. We fit our 8 micron LFs to the double power-law with the power index of alpha= 1.53 and beta= 2.85 at the break luminosity. We made extensive comparisons with various MIR LFs from several literatures. Our results for local galaxies from the NEP region are generally consistent with other works for different fields over wide luminosity ranges. The comparisons with the results from the NEP-Deep data as well as other LFs imply the luminosity evolution from higher redshifts towards the present epoch.
We have cross-matched the 1.4 GHz NRAO VLA Sky Survey (NVSS) with the first 210 fields observed in the 2dF Galaxy Redshift Survey (2dFGRS), covering an effective area of 325 square degrees (about 20% of the final 2dFGRS area). This yields a set of optical spectra of 912 candidate NVSS counterparts, of which we identify 757 as genuine radio IDs - the largest and most homogeneous set of radio-source spectra ever obtained. The 2dFGRS radio sources span the redshift range z=0.005 to 0.438, and are a mixture of active galaxies (60%) and star-forming galaxies (40%). About 25% of the 2dFGRS radio sources are spatially resolved by NVSS, and the sample includes three giant radio galaxies with projected linear size greater than 1 Mpc. The high quality of the 2dF spectra means we can usually distinguish unambiguously between AGN and star-forming galaxies. We have made a new determination of the local radio luminosity function at 1.4 GHz for both active and star-forming galaxies, and derive a local star-formation density of 0.022+/-0.004 solar masses per year per cubic Mpc. (Ho=50 km/s/Mpc).
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا