Do you want to publish a course? Click here

Particles-on-Demand for Kinetic Theory

120   0   0.0 ( 0 )
 Added by Fabian B\\\"osch
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

A novel formulation of fluid dynamics as a kinetic theory with tailored, on-demand constructed particles removes any restrictions on Mach number and temperature as compared to its predecessors, the lattice Boltzmann methods and their modifications. In the new kinetic theory, discrete particles are determined by a rigorous limit process which avoids ad hoc assumptions about their velocities. Classical benchmarks for incompressible and compressible flows demonstrate that the proposed discrete-particles kinetic theory opens up an unprecedented wide domain of applications for computational fluid dynamics.



rate research

Read More

The capability to simulate a two-way coupled interaction between a rarefied gas and an arbitrary-shaped colloidal particle is important for many practical applications, such as aerospace engineering, lung drug deliver and semiconductor manufacturing. By means of numerical simulations based on the Direct Simulation Monte Carlo (DSMC) method, we investigate the influence of the orientation of the particle and rarefaction on the drag and lift coefficients, in the case of prolate and oblate ellipsoidal particles immersed in a uniform ambient flow. This is done by modelling the solid particles using a cut-cell algorithm embedded within our DSMC solver. In this approach, the surface of the particle is described by its analytical expression and the microscopic gas-solid interactions are computed exactly using a ray-tracing technique. The measured drag and lift coefficients are used to extend the correlations available in the continuum regime to the rarefied regime, focusing on the transitional and free-molecular regimes. The functional forms for the correlations for the ellipsoidal particles are chosen as a generalisation from the spherical case. We show that the fits over the data from numerical simulations can be extended to regimes outside the simulated range of $Kn$ by testing the obtained predictive model on values of $Kn$ that where not included in the fitting process, allowing to achieve an higher precision when compared with existing predictive models from literature. Finally, we underline the importance of this work in providing new correlations for non-spherical particles that can be used for point-particle Euler-Lagrangian simulations to address the problem of contamination from finite-size particles in high-tech mechanical systems.
Soft particles at fluid interfaces play an important role in many aspects of our daily life, such as the food industry, paints and coatings, and medical applications. Analytical methods are not capable of describing the emergent effects of the complex dynamics of suspensions of many soft particles, whereas experiments typically either only capture bulk properties or require invasive methods. Computational methods are therefore a great tool to complement experimental work. However, an efficient and versatile numerical method is needed to model dense suspensions of many soft particles. In this article we propose a method to simulate soft particles in a multi-component fluid, both at and near fluid-fluid interfaces, based on the lattice Boltzmann method, and characterize the error stemming from the fluid-structure coupling for the particle equilibrium shape when adsorbed onto a fluid-fluid interface. Furthermore, we characterize the influence of the preferential contact angle of the particle surface and the particle softness on the vertical displacement of the center of mass relative to the fluid interface. Finally, we demonstrate the capability of our model by simulating a soft capsule adsorbing onto a fluid-fluid interface with a shear flow parallel to the interface, and the covering of a droplet suspended in another fluid by soft particles with different wettability.
Particles of low velocity, travelling without dissipation in a superfluid, can interact and emit sound when they collide. We propose a minimal model in which the equations of motion of the particles, including a short-range repulsive force, are self-consistently coupled with the Gross-Pitaevskii equation. We use this model to demonstrate the existence of an effective superfluid-mediated attractive interaction between the particles; and we study numerically the collisional dynamics of particles as a function of their incident kinetic energy and the length-scale of the repulsive force. We find a transition from almost elastic to completely inelastic (sticking) collisions as the parameters are tuned. We find that aggregation and clustering result from this sticking transition in multi-particle systems.
Starting from the action-angle variables and using a standard asymptotic expansion, here we present a new derivation of the Wave Kinetic Equation for resonant process of the type $2leftrightarrow 2$. Despite not offering new physical results and despite not being more rigorous than others, our procedure has the merit of being straightforward; it allows for a direct control of the random phase and random amplitude hypothesis of the initial wave field. We show that the Wave Kinetic Equation can be derived assuming only initial random phases. The random amplitude approximation has to be taken only at the end, after taking the weak nonlinearity and large box limits. This is because the $delta$-function over frequencies contains the amplitude-dependent nonlinear correction which should be dropped before the random amplitude approximation applies. If $epsilon$ is the small parameter in front of the anharmonic part of the Hamiltonian, the time scale associated with the Wave Kinetic equation is shown to be $1/epsilon^2$. We give evidence that random phase and amplitude hypotheses persist up to a time of the order $1/epsilon$.
Extreme events provide relevant insights into the dynamics of climate and their understanding is key for mitigating the impact of climate variability and climate change. By applying large deviation theory to a state-of-the-art Earth system model, we define the climatology of persistent heatwaves and cold spells in key target geographical regions by estimating the rate functions for the surface temperature, and we assess the impact of increasing CO$_2$ concentration on such persistent anomalies. Hence, we can better quantify the increasing hazard {color{black}due} to heatwaves in a warmer climate. We show that two 2010 high impact events - summer Russian heatwave and winter Dzud in Mongolia - are associated with atmospheric patterns that are exceptional compared to the typical ones, but typical compared to the climatology of extremes. Their dynamics is encoded in the natural variability of the climate. Finally, we propose and test an approximate formula for the return times of large and persistent temperature fluctuations from easily accessible statistical properties.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا