Do you want to publish a course? Click here

Derivation of the Four-Wave Kinetic Equation in Action-Angle Variables

171   0   0.0 ( 0 )
 Added by Giovanni Dematteis
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Starting from the action-angle variables and using a standard asymptotic expansion, here we present a new derivation of the Wave Kinetic Equation for resonant process of the type $2leftrightarrow 2$. Despite not offering new physical results and despite not being more rigorous than others, our procedure has the merit of being straightforward; it allows for a direct control of the random phase and random amplitude hypothesis of the initial wave field. We show that the Wave Kinetic Equation can be derived assuming only initial random phases. The random amplitude approximation has to be taken only at the end, after taking the weak nonlinearity and large box limits. This is because the $delta$-function over frequencies contains the amplitude-dependent nonlinear correction which should be dropped before the random amplitude approximation applies. If $epsilon$ is the small parameter in front of the anharmonic part of the Hamiltonian, the time scale associated with the Wave Kinetic equation is shown to be $1/epsilon^2$. We give evidence that random phase and amplitude hypotheses persist up to a time of the order $1/epsilon$.



rate research

Read More

We consider the effect of the wind and the dissipation on the nonlinear stages of the modulational instability. By applying a suitable transformation, we map the forced/damped Nonlinear Schrodinger (NLS) equation into the standard NLS with constant coefficients. The transformation is valid as long as |{Gamma}t| ll 1, with {Gamma} the growth/damping rate of the waves due to the wind/dissipation. Approximate rogue wave solutions of the equation are presented and discussed. The results shed some lights on the effects of wind and dissipation on the formation of rogue waves.
It is shown that the Truncated Euler Equations, i.e. a finite set of ordinary differential equations for the amplitude of the large-scale modes, can correctly describe the complex transitional dynamics that occur within the turbulent regime of a confined 2D Navier-Stokes flow with bottom friction and a spatially periodic forcing. In particular, the random reversals of the large scale circulation on the turbulent background involve bifurcations of the probability distribution function of the large-scale circulation velocity that are described by the related microcanonical distribution which displays transitions from gaussian to bimodal and broken ergodicity. A minimal 13-mode model reproduces these results.
A detailed comparison between data from experimental measurements and numerical simulations of Lagrangian velocity structure functions in turbulence is presented. By integrating information from experiments and numerics, a quantitative understanding of the velocity scaling properties over a wide range of time scales and Reynolds numbers is achieved. The local scaling properties of the Lagrangian velocity increments for the experimental and numerical data are in good quantitative agreement for all time lags. The degree of intermittency changes when measured close to the Kolmogorov time scales or at larger time lags. This study resolves apparent disagreements between experiment and numerics.
As a counterpart to our previous study of the stationary distribution formed by sums of positions at the Feigenbaum point via the period-doubling cascade in the logistic map (Eur. Phys. J. B 87 32, (2014)), we determine the family of related distributions for the accompanying cascade of chaotic band-splitting points in the same system. By doing this we rationalize how the interplay of regular and chaotic dynamics gives rise to either multiscale or gaussian limit distributions. As demonstrated before (J. Stat. Mech. P01001 (2010)), sums of trajectory positions associated with the chaotic-band attractors of the logistic map lead only to a gaussian limit distribution, but, as we show here, the features of the stationary multiscale distribution at the Feigenbaum point can be observed in the distributions obtained from finite sums with sufficiently small number of terms. The multiscale features are acquired from the repellor preimage structure that dominates the dynamics toward the chaotic attractors. When the number of chaotic bands increases this hierarchical structure with multiscale and discrete scale-invariant properties develops. Also, we suggest that the occurrence of truncated q-gaussian-shaped distributions for specially prescribed sums are t-Student distributions premonitory of the gaussian limit distribution.
Fluid-dynamical equations of motion can be derived from the Boltzmann equation in terms of an expansion around a single-particle distribution function which is in local thermodynamical equilibrium, i.e., isotropic in momentum space in the rest frame of a fluid element. However, in situations where the single-particle distribution function is highly anisotropic in momentum space, such as the initial stage of heavy-ion collisions at relativistic energies, such an expansion is bound to break down. Nevertheless, one can still derive a fluid-dynamical theory, called anisotropic dissipative fluid dynamics, in terms of an expansion around a single-particle distribution function, $hat{f}_{0bf k}$, which incorporates (at least parts of) the momentum anisotropy via a suitable parametrization. We construct such an expansion in terms of polynomials in energy and momentum in the direction of the anisotropy and of irreducible tensors in the two-dimensional momentum subspace orthogonal to both the fluid velocity and the direction of the anisotropy. From the Boltzmann equation we then derive the set of equations of motion for the irreducible moments of the deviation of the single-particle distribution function from $hat{f}_{0bf k}$. Truncating this set via the 14-moment approximation, we obtain the equations of motion of anisotropic dissipative fluid dynamics.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا