Do you want to publish a course? Click here

Harmonic Generation from Metal-Oxide and Metal-Metal Boundaries

350   0   0.0 ( 0 )
 Added by Michael Scalora
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We explore the outcomes of detailed microscopic models by calculating second- and third-harmonic generation from thin film surfaces with discontinuous free-electron densities. These circumstances can occur in structures consisting of a simple metal mirror, or arrangements composed of either different metals or a metal and a free electron system like a conducting oxide. Using a hydrodynamic approach we highlight the case of a gold mirror, and that of a two-layer system containing indium tin oxide (ITO) and gold. We assume the gold mirror surface is characterized by a free-electron cloud of varying density that spills into the vacuum, which as a result of material dispersion exhibits epsilon-near-zero conditions and local field enhancement at the surface. For a bylayer consisting of a thin ITO and gold films, if the wave is incident from the ITO side the electromagnetic field is presented with a free-electron discontinuity at the ITO/gold interface, and wavelength-dependent, epsilon-near-zero conditions that enhance local fields and conversion efficiencies, and determine the surfaces emission properties. We evaluate the relative significance of additional nonlinear sources that arise when a free-electron discontinuity is present, and show that harmonic generation can be sensitive to the density of the screening free-electron cloud, and not its thickness. Our findings also suggest the possibility to control surface harmonic generation through surface charge engineering.



rate research

Read More

We present a new theoretical approach to the study of second and third harmonic generation from metallic nanostructures and nanocavities filled with a nonlinear material, in the ultrashort pulse regime. We model the metal as a two-component medium, using the hydrodynamic model to describe free electrons, and Lorentz oscillators to account for core electron contributions to both the linear dielectric constant and to harmonic generation. The active nonlinear medium that may fill a metallic nanocavity, or be positioned between metallic layers in a stack, is also modeled using Lorentz oscillators and surface phenomena due to symmetry breaking are taken into account. We study the effects of incident TE- and TM-polarized fields and show that a simple re-examination of the basic equations reveals additional exploitable dynamical features of nonlinear frequency conversion in plasmonic nanostructures.
We theoretically investigate second harmonic generation that originates from the nonlinear, magnetic Lorentz force term from single and multiple apertures carved on thick, opaque metal substrates. The linear transmission properties of apertures on metal substrates have been previously studied in the context of the extraordinary transmission of light. The transmission process is driven by a number of physical mechanisms, whose characteristics and relative importance depend on the thickness of the metallic substrate, slit size, and slit separation. In this work we show that a combination of cavity effects and surface plasmon generation gives rise to enhanced second harmonic generation in the regime of extraordinary transmittance of the pump field. We have studied both forward and backward second harmonic generation conversion efficiencies as functions of the geometrical parameters, and how they relate to pump transmission efficiency. The resonance phenomenon is evident in the generated second harmonic signal, as conversion efficiency depends on the duration of incident pump pulse, and hence its bandwidth. Our results show that the excitation of tightly confined modes as well as the combination of enhanced transmission and nonlinear processes can lead to several potential new applications such as photo-lithography, scanning microscopy, and high-density optical data storage devices.
Monolayer transition metal dichalcogenides (TMDs) exhibit high nonlinear optical (NLO) susceptibilities. Experiments on MoS$_2$ have indeed revealed very large second-order ($chi^{(2)}$) and third-order ($chi^{(3)}$) optical susceptibilities. However, third harmonic generation results of other layered TMDs has not been reported. Furthermore, the reported $chi^{(2)}$ and $chi^{(3)}$ of MoS$_2$ vary by several orders of magnitude, and a reliable quantitative comparison of optical nonlinearities across different TMDs has remained elusive. Here, we investigate second- and third-harmonic generation, and three-photon photoluminescence in TMDs. Specifically, we present an experimental study of $chi^{(2)}$, and $chi^{(3)}$ of four common TMD materials (ce{MoS2}, ce{MoSe2}, ce{WS2} and ce{WSe2}) by placing different TMD flakes in close proximity to each other on a common substrate, allowing their NLO properties to be accurately obtained from a single measurement. $chi^{(2)}$ and $chi^{(3)}$ of the four monolayer TMDs have been compared, indicating that they exhibit distinct NLO responses. We further present theoretical simulations of these susceptibilities in qualitative agreement with the measurements. Our comparative studies of the NLO responses of different two-dimensional layered materials allow us to select the best candidates for atomic-scale nonlinear photonic applications, such as frequency conversion and all-optical signal processing.
Rigorous electrodynamical simulations based on the nonlinear Drude model are performed to investigate the influence of strong coupling on high harmonic generation by periodic metal gratings. It is shown that a thin dispersive material with a third order nonlinearity strongly coupled to surface plasmon-polaritons significantly affects even harmonics generated solely by the metal. The physical nature of this effect is explained using a simple analytical model and further supported by numerical simulations. Furthermore, the behavior of the second and third harmonics is investigated as a function of various physical parameters of the model material system, revealing highly complex dynamics. The nonlinear optical response of 2D few-layer WS2 with both second and third order susceptibilities coupled to a periodic plasmonic grating is shown to have a significant effect on the second harmonic generation of the metal.
We investigate supercontinuum generation in several suspended-core soft-glass photonic crystal fibers pumped by an optical parametric oscillator tunable around 1550 nm. The fibers were drawn from lead-bismuth-gallium-cadmium-oxide glass (PBG-81) with a wide transmission window from 0.5-2.7 micron and a high nonlinear refractive index up to 4.3.10^(-19) m^2/W. They have been specifically designed with a microscale suspended hexagonal core for efficient supercontinuum generation around 1550 nm. We experimentally demonstrate two supercontinuum spectra spanning from 1.07-2.31 micron and 0.89-2.46 micron by pumping two PCFs in both normal and anomalous dispersion regimes, respectively. We also numerically model the group velocity dispersion curves for these fibers from their scanning electron microscope images. Results are in good agreement with numerical simulations based on the generalized nonlinear Schrodinger equation including the pump frequency chirp.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا