Do you want to publish a course? Click here

Explainable Agreement through Simulation for Tasks with Subjective Labels

86   0   0.0 ( 0 )
 Added by John Foley
 Publication date 2018
and research's language is English
 Authors John Foley




Ask ChatGPT about the research

The field of information retrieval often works with limited and noisy data in an attempt to classify documents into subjective categories, e.g., relevance, sentiment and controversy. We typically quantify a notion of agreement to understand the difficulty of the labeling task, but when we present final results, we do so using measures that are unaware of agreement or the inherent subjectivity of the task. We propose using user simulation to understand the effect size of this noisy agreement data. By simulating truth and predictions, we can understand the maximum scores a dataset can support: for if a classifier is doing better than a reasonable model of a human, we cannot conclude that it is actually better, but that it may be learning noise present in the dataset. We present a brief case study on controversy detection that concludes that a commonly-used dataset has been exhausted: in order to advance the state-of-the-art, more data must be gathered at the current level of label agreement in order to distinguish between techniques with confidence.



rate research

Read More

Explainable artificially intelligent (XAI) systems form part of sociotechnical systems, e.g., human+AI teams tasked with making decisions. Yet, current XAI systems are rarely evaluated by measuring the performance of human+AI teams on actual decision-making tasks. We conducted two online experiments and one in-person think-aloud study to evaluate two currently common techniques for evaluating XAI systems: (1) using proxy, artificial tasks such as how well humans predict the AIs decision from the given explanations, and (2) using subjective measures of trust and preference as predictors of actual performance. The results of our experiments demonstrate that evaluations with proxy tasks did not predict the results of the evaluations with the actual decision-making tasks. Further, the subjective measures on evaluations with actual decision-making tasks did not predict the objective performance on those same tasks. Our results suggest that by employing misleading evaluation methods, our field may be inadvertently slowing its progress toward developing human+AI teams that can reliably perform better than humans or AIs alone.
171 - Weizhi Ma , Min Zhang , Yue Cao 2019
Explainability and effectiveness are two key aspects for building recommender systems. Prior efforts mostly focus on incorporating side information to achieve better recommendation performance. However, these methods have some weaknesses: (1) prediction of neural network-based embedding methods are hard to explain and debug; (2) symbolic, graph-based approaches (e.g., meta path-based models) require manual efforts and domain knowledge to define patterns and rules, and ignore the item association types (e.g. substitutable and complementary). In this paper, we propose a novel joint learning framework to integrate textit{induction of explainable rules from knowledge graph} with textit{construction of a rule-guided neural recommendation model}. The framework encourages two modules to complement each other in generating effective and explainable recommendation: 1) inductive rules, mined from item-centric knowledge graphs, summarize common multi-hop relational patterns for inferring different item associations and provide human-readable explanation for model prediction; 2) recommendation module can be augmented by induced rules and thus have better generalization ability dealing with the cold-start issue. Extensive experimentsfootnote{Code and data can be found at: url{https://github.com/THUIR/RuleRec}} show that our proposed method has achieved significant improvements in item recommendation over baselines on real-world datasets. Our model demonstrates robust performance over noisy item knowledge graphs, generated by linking item names to related entities.
Human annotations serve an important role in computational models where the target constructs under study are hidden, such as dimensions of affect. This is especially relevant in machine learning, where subjective labels derived from related observable signals (e.g., audio, video, text) are needed to support model training and testing. Current research trends focus on correcting artifacts and biases introduced by annotators during the annotation process while fusing them into a single annotation. In this work, we propose a novel annotation approach using triplet embeddings. By lifting the absolute annotation process to relative annotations where the annotator compares individual target constructs in triplets, we leverage the accuracy of comparisons over absolute ratings by human annotators. We then build a 1-dimensional embedding in Euclidean space that is indexed in time and serves as a label for regression. In this setting, the annotation fusion occurs naturally as a union of sets of sampled triplet comparisons among different annotators. We show that by using our proposed sampling method to find an embedding, we are able to accurately represent synthetic hidden constructs in time under noisy sampling conditions. We further validate this approach using human annotations collected from Mechanical Turk and show that we can recover the underlying structure of the hidden construct up to bias and scaling factors.
168 - Lei Li , Yongfeng Zhang , Li Chen 2021
Personalization of natural language generation plays a vital role in a large spectrum of tasks, such as explainable recommendation, review summarization and dialog systems. In these tasks, user and item IDs are important identifiers for personalization. Transformer, which is demonstrated with strong language modeling capability, however, is not personalized and fails to make use of the user and item IDs since the ID tokens are not even in the same semantic space as the words. To address this problem, we present a PErsonalized Transformer for Explainable Recommendation (PETER), on which we design a simple and effective learning objective that utilizes the IDs to predict the words in the target explanation, so as to endow the IDs with linguistic meanings and to achieve personalized Transformer. Besides generating explanations, PETER can also make recommendations, which makes it a unified model for the whole recommendation-explanation pipeline. Extensive experiments show that our small unpretrained model outperforms fine-tuned BERT on the generation task, in terms of both effectiveness and efficiency, which highlights the importance and the nice utility of our design.
Incorporating knowledge graph into recommender systems has attracted increasing attention in recent years. By exploring the interlinks within a knowledge graph, the connectivity between users and items can be discovered as paths, which provide rich and complementary information to user-item interactions. Such connectivity not only reveals the semantics of entities and relations, but also helps to comprehend a users interest. However, existing efforts have not fully explored this connectivity to infer user preferences, especially in terms of modeling the sequential dependencies within and holistic semantics of a path. In this paper, we contribute a new model named Knowledge-aware Path Recurrent Network (KPRN) to exploit knowledge graph for recommendation. KPRN can generate path representations by composing the semantics of both entities and relations. By leveraging the sequential dependencies within a path, we allow effective reasoning on paths to infer the underlying rationale of a user-item interaction. Furthermore, we design a new weighted pooling operation to discriminate the strengths of different paths in connecting a user with an item, endowing our model with a certain level of explainability. We conduct extensive experiments on two datasets about movie and music, demonstrating significant improvements over state-of-the-art solutions Collaborative Knowledge Base Embedding and Neural Factorization Machine.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا