Do you want to publish a course? Click here

Heat transfer statistics in extreme-near-field radiation

381   0   0.0 ( 0 )
 Added by Gaomin Tang
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the full counting statistics of extreme-near-field radiative heat transfer using nonequilibrium Greens function formalism. In the extreme near field, the electron-electron interactions between two metallic bodies dominate the heat transfer process. We start from a general tight-binding electron Hamiltonian and obtain a Levitov-Lesovik like scaled cumulant generating function (SCGF) using random phase approximation to deal with electron-electron interaction. The expressions of heat current and its fluctuation (second cumulant) are obtained from the SCGF. The fluctuation symmetry relation of the SCGF is verified. In the linear response limit (small temperature gradient), we express the heat current cumulant by a linear combination of lower order cumulants. The heat current fluctuation is $2k_B T^2$ times the thermal conductance with $T$ the average temperature in the linear response limit, and this provides an evaluation of heat current fluctuation by measuring the thermal conductance in extreme-near field-radiative heat transfer.



rate research

Read More

Extreme near-field heat transfer between metallic surfaces is a subject of debate as the state-of-the-art theory and experiments are in disagreement on the energy carriers driving heat transport. In an effort to elucidate the physics of extreme near-field heat transfer between metallic surfaces, this Letter presents a comprehensive model combining radiation, acoustic phonon and electron transport across sub-10-nm vacuum gaps. The results obtained for gold surfaces show that in the absence of bias voltage, acoustic phonon transport is dominant for vacuum gaps smaller than ~2 nm. The application of a bias voltage significantly affects the dominant energy carriers as it increases the phonon contribution mediated by the long-range Coulomb force and the electron contribution due to a lower potential barrier. For a bias voltage of 0.6 V, acoustic phonon transport becomes dominant at a vacuum gap of 5 nm, whereas electron tunneling dominates at sub-1-nm vacuum gaps. The comparison of the theory against experimental data from the literature suggests that well-controlled measurements between metallic surfaces are needed to quantify the contributions of acoustic phonon and electron as a function of the bias voltage.
Many-body physics aims to understand emergent properties of systems made of many interacting objects. This article reviews recent progress on the topic of radiative heat transfer in many-body systems consisting of thermal emitters interacting in the near-field regime. Near-field radiative heat transfer is a rapidly emerging field of research in which the cooperative behavior of emitters gives rise to peculiar effects which can be exploited to control heat flow at the nanoscale. Using an extension of the standard Polder and van Hove stochastic formalism to deal with thermally generated fields in $N$-body systems, along with their mutual interactions through multiple scattering, a generalized Landauer-like theory is derived to describe heat exchange mediated by thermal photons in arbitrary reciprocal and non-reciprocal multi-terminal systems. In this review, we use this formalism to address both transport and dynamics in these systems from a unified perspective. Our discussion covers: (i) the description of non-additivity of heat flux and its related effects, including fundamental limits as well as the role of nanostructuring and material choice, (ii) the study of equilibrium states and multistable states, (iii) the relaxation dynamics (thermalization) toward local and global equilibria, (iv) the analysis of heat transport regimes in ordered and disordered systems comprised of a large number of objects, density and range of interactions, and (v) the description of thermomagnetic effects in magneto-optical systems and heat transport mechanisms in non-Hermitian many-body systems. We conclude this review by listing outstanding challenges and promising future research directions.
121 - Anh D. Phan , The-Long Phan , 2013
The radiative heat transfer between gold nanoparticle layers is presented using the coupled dipole method. Gold nanoparticles are modelled as effective electric and magnetic dipoles interacting via electromagnetic fluctuations. The effect of higher-order multipoles is implemented in the expression of electric polarizability to calculate the interactions at short distances. Our findings show that the near-field radiation reduces as the radius of the nanoparticles is increased. Also, the magnetic dipole contribution to the heat exchange becomes more important for larger particles. When one layer is displayed in parallel with respect to the other layer, the near-field heat transfer exhibits oscillatory-like features due to the influence of the individual nanostructures. Further details about the effect of the nanoparticles size are also discussed.
The dynamic heat transfer between two half-spaces separated by a vacuum gap due to coupling of their surface modes is modelled using the theory that describes the dynamic energy transfer between two coupled harmonic oscillators each separately connected to a heat bath and with the heat baths maintained at different temperatures. The theory is applied for the case when the two surfaces are made up of a polar crystal which supports surface polaritons that can be excited at room temperature and the predicted heat transfer is compared with the steady state heat transfer value calculated from standard fluctuational electrodynamics theory. It is observed that for small time intervals the value of heat flux can reach as high as 1.5 times that of steady state value.
It is shown that thermally excited plasmon-polariton modes can strongly mediate, enhance and emph{tune} the near-field radiation transfer between two closely separated graphene sheets. The dependence of near-field heat exchange on doping and electron relaxation time is analyzed in the near infra-red within the framework of fluctuational electrodynamics. The dominant contribution to heat transfer can be controlled to arise from either interband or intraband processes. We predict maximum transfer at low doping and for plasmons in two graphene sheets in resonance, with orders-of-magnitude enhancement (e.g. $10^2$ to $10^3$ for separations between $0.1mu m$ to $10nm$) over the Stefan-Boltzmann law, known as the far field limit. Strong, tunable, near-field transfer offers the promise of an externally controllable thermal switch as well as a novel hybrid graphene-graphene thermoelectric/thermophotovoltaic energy conversion platform.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا