Do you want to publish a course? Click here

Large $c$ Virasoro Blocks from Monodromy Method beyond Known Limits

57   0   0.0 ( 0 )
 Added by Yuya Kusuki
 Publication date 2018
  fields
and research's language is English
 Authors Yuya Kusuki




Ask ChatGPT about the research

In this paper, we study large $c$ Virasoro blocks by using the Zamolodchikov monodromy method beyond its known limits. We give an analytic proof of our recent conjectur, which implied that the asymptotics of the large $c$ conformal blocks can be expressed in very simple forms, even if outside its known limits, namely the semiclassical limit or the heavy-light limit. In particular, we analytically discuss the fact that the asymptotic behavior of large $c$ conformal blocks drastically changes when the dimensions of external primary states reach the value $frac{c}{32}$, which is conjectured by our numerical studies. The results presented in this work imply that the general solutions to the Zamolodchikov recursion relation are given by Cardy-like formula, which is an important conclusion that can be numerically drawn from our recent works. Mathematical derivations and analytical results imply that, in the bulk, the collision behavior between two heavy particles may undergo a remarkable transition associated with their masses.

rate research

Read More

94 - Yuya Kusuki 2018
We study large $c$ conformal blocks outside the known limits. This work seems to be hard, but it is possible numerically by using the Zamolodchikov recursion relation. As a result, we find new some properties of large $c$ conformal blocks with a pair of two different dimensions for any channel and with various internal dimensions. With light intermediate states, we find a Cardy-like asymptotic formula for large $c$ conformal blocks and also we find that the qualitative behavior of various large $c$ blocks drastically changes when the dimensions of external primary states reach the value $c/32$. And we proceed to the study of blocks with heavy intermediate states $h_p$ and we find some simple dependence on heavy $h_p$ for large $c$ blocks. The results in this paper can be applied to, for example, the calculation of OTOC or Entanglement Entropy. In the end, we comment on the application to the conformal bootstrap in large $c$ CFTs.
We study string inspired two-field models of large-field inflation based on axion monodromy in the presence of an interacting heavier modulus. This class of models has enough structure to approximate at least part of the backreaction effects known in full string theory, such as kinetic mixing with the axion, and flattening of the scalar potential. Yet, it is simple enough to fully describe the structure of higher-point curvature perturbation interactions driven by the adjusting modulus backreaction dynamics. We find that the presence of the heavy modulus can be described via two equivalent effective field theories, both of which can incorporate reductions of the speed of sound. Hence, the presence of heavier moduli in axion monodromy inflation constructions will necessarily generate some amount of non-Gaussianity accompanied by changes to $n_s$ and $r$ beyond what results from just from the well known adiabatic flattening backreaction.
The generalization of squeezing is realized in terms of the Virasoro algebra. The higher-order squeezing can be introduced through the higher-order time-dependent potential, in which the standard squeezing operator is generalized to higher-order Virasoro operators. We give a formula that describes the number of particles generated by the higher-order squeezing when a parameter specifying the degree of squeezing is small. The formula (18) shows that the higher the order of squeezing becomes the larger the number of generated particles grows.
192 - S.Odake 1999
In this lecture we discuss `beyond CFT from symmetry point of view. After reviewing the Virasoro algebra, we introduce deformed Virasoro algebras and elliptic algebras. These algebras appear in solvable lattice models and we study them by free field approach.
We derive conformal blocks in an inverse spacetime dimension expansion. In this large D limit, the blocks are naturally written in terms of a new combination of conformal cross-ratios. We comment on the implications for the conformal bootstrap at large D.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا