Do you want to publish a course? Click here

Conformal Blocks in the Large D Limit

135   0   0.0 ( 0 )
 Added by David Poland
 Publication date 2013
  fields
and research's language is English




Ask ChatGPT about the research

We derive conformal blocks in an inverse spacetime dimension expansion. In this large D limit, the blocks are naturally written in terms of a new combination of conformal cross-ratios. We comment on the implications for the conformal bootstrap at large D.



rate research

Read More

We consider entanglement negativity for two disjoint intervals in 1+1 dimensional CFT in the limit of large central charge. As the two intervals get close, the leading behavior of negativity is given by the logarithm of the conformal block where a set of approximately null descendants appears in the intermediate channel. We compute this quantity numerically and compare with existing analytic methods which provide perturbative expansion in powers of the cross-ratio.
For conformal field theories in arbitrary dimensions, we introduce a method to derive the conformal blocks corresponding to the exchange of a traceless symmetric tensor appearing in four point functions of operators with spin. Using the embedding space formalism, we show that one can express all such conformal blocks in terms of simple differential operators acting on the basic scalar conformal blocks. This method gives all conformal blocks for conformal field theories in three dimensions. We demonstrate how this formalism can be applied in a few simple examples.
105 - Pietro Menotti 2016
We give a simple iterative procedure to compute the classical conformal blocks on the sphere to all order in the modulus.
We compute the conformal blocks associated with scalar-scalar-fermion-fermion 4-point functions in 3D CFTs. Together with the known scalar conformal blocks, our result completes the task of determining the so-called `seed blocks in three dimensions. Conformal blocks associated with 4-point functions of operators with arbitrary spins can now be determined from these seed blocks by using known differential operators.
112 - Pietro Menotti 2018
After deriving the classical Ward identity for the variation of the action under a change of the modulus of the torus we map the problem of the sphere with four sources to the torus. We extend the method previously developed for computing the classical conformal blocks for the sphere topology to the tours topology. We give the explicit results for the classical blocks up to the third order in the nome included and compare them with the classical limit of the quantum conformal blocks. The extension to higher orders is straightforward.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا