Do you want to publish a course? Click here

Digital compensation of the side-band-rejection ratio in a fully analog 2SB sub-millimeter receiver

144   0   0.0 ( 0 )
 Added by Rafael Rodriguez
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

In observational radio astronomy, sideband-separating receivers are preferred, particularly under high atmospheric noise, which is usually the case in the sub-millimeter range. However, obtaining a good rejection ratio between the two sidebands is difficult since, unavoidably, imbalances in the different analog components appear. We describe a method to correct these imbalances without making any change in the analog part of the sideband-separating receiver, specifically, keeping the intermediate-frequency hybrid in place. This opens the possibility of implementing the method in any existing receiver. We have built hardware to demonstrate the validity of the method and tested it on a fully analog receiver operating between 600 and 720GHz. We have tested the stability of calibration and performance vs time and after full resets of the receiver. We have performed an error analysis to compare the digital compensation in two configurations of analog receivers, with and without intermediate frequency (IF) hybrid. An average compensated sideband rejection ratio of 46dB is obtained. Degradation of the compensated sideband rejection ratio on time and after several resets of the receiver is minimal. A receiver with an IF hybrid is more robust to systematic errors. Moreover, we have shown that the intrinsic random errors in calibration have the same impact for configuration without IF hybrid and for a configuration with IF hybrid with analog rejection ratio better than 10dB. Compensated rejection ratios above 40dB are obtained even in the presence of high analog rejection. The method is robust allowing its use under normal operational conditions at any telescope. We also demonstrate that a full analog receiver is more robust against systematic errors. Finally, the error bars associated to the compensated rejection ratio are almost independent of whether IF hybrid is present or not.

rate research

Read More

In this work, we consider the design of hybrid analog-digital (HAD) multi-carrier MIMO-OFDM two-way relaying systems, where the relay station is equipped with a HAD amplify-and-forward architecture and every mobile station is equipped with a fully-digital beamforming architecture. We propose a sub-optimal solution by reformulating the original non-convex problem as a constrained Tucker2 decomposition with the objective of minimizing the sum Euclidean-norm between the HAD amplification matrices and their fully-digital counterparts. For the fully-digital amplification matrix design, we use a Frobenius-norm maximization of the effective channels on every subcarrier and propose an effective solution applicable for multi-stream communication scenarios. After that, we propose an alternating maximization (AltMax) HAD solution by exploiting the tensor structure of the reformulated problem. Simulation results are provided, where we show that the proposed fully-digital and AltMax-based HAD amplification matrix designs outperform some benchmark methods, especially for multi-stream communication scenarios.
In a growing number of applications, there is a need to digitize signals whose spectral characteristics are challenging for traditional Analog-to-Digital Converters (ADCs). Examples, among others, include systems where the ADC must acquire at once a very wide but sparsely and dynamically occupied bandwidth supporting diverse services, as well as systems where the signal of interest is subject to strong narrowband co-channel interference. In such scenarios, the resolution requirements can be prohibitively high. As an alternative, the recently proposed modulo-ADC architecture can in principle require dramatically fewer bits in the conversation to obtain the target fidelity, but requires that information about the spectrum be known and explicitly taken into account by the analog and digital processing in the converter, which is frequently impractical. To address this limitation, we develop a blind version of the architecture that requires no such knowledge in the converter, without sacrificing performance. In particular, it features an automatic modulo-level adjustment and a fully adaptive modulo unwrapping mechanism, allowing it to asymptotically match the characteristics of the unknown input signal. In addition to detailed analysis, simulations demonstrate the attractive performance characteristics in representative settings.
A Kramers-Kronig receiver with a continuous wave tone added digitally at the transmitter is combined with a digital resolution enhancer to limit the increase in transmitter quantization noise. Performance increase is demonstrated, as well as the ability to reduce the number of bits in the digital-to-analog converter.
The Atacama Large Millimeter/submillimeter Array(ALMA) Band 1 receiver covers the 35-50 GHz frequency band. Development of prototype receivers, including the key components and subsystems has been completed and two sets of prototype receivers were fully tested. We will provide an overview of the ALMA Band 1 science goals, and its requirements and design for use on the ALMA. The receiver development status will also be discussed and the infrastructure, integration, evaluation of fully-assembled band 1 receiver system will be covered. Finally, a discussion of the technical and management challenges encountered will be presented.
We present a sub-Nyquist analog-to-digital converter of wideband inputs. Our circuit realizes the recently proposed modulated wideband converter, which is a flexible platform for sampling signals according to their actual bandwidth occupation. The theoretical work enables, for example, a sub-Nyquist wideband receiver, which has no prior information on the transmitter carrier positions. Our design supports input signals with 2 GHz Nyquist rate and 120 MHz spectrum occupancy, with arbitrary transmission frequencies. The sampling rate is as low as 280 MHz. To the best of our knowledge, this is the first reported wideband hardware for sub-Nyquist conversion. Furthermore, the modular design is proven to compete with state-of-the-art Nyquist ADCs in terms of resolution bits and full-scale range. We describe the various circuit design considerations, with an emphasis on the nonordinary challenges the converter introduces: mixing a signal with a multiple set of sinusoids, rather than a single local oscillator, and generation of highly-transient periodic waveforms, with transient intervals on the order of the Nyquist rate. A series of hardware experiments validates the design and demonstrate sub-Nyquist sampling.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا