Do you want to publish a course? Click here

Fully-gapped superconductivity in single crystals of noncentrosymmetric Re$_6$Zr with broken time-reversal symmetry

265   0   0.0 ( 0 )
 Added by Michael Smidman
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The noncentrosymmetric superconductor Re$_6$Zr has attracted much interest due to the observation of broken time-reversal symmetry in the superconducting state. Here we report an investigation of the superconducting gap structure of Re$_6$Zr single crystals by measuring the magnetic penetration depth shift $Deltalambda(T)$ and electronic specific heat $C_e(T)$. $Deltalambda(T)$ exhibits an exponential temperature dependence behavior for $T~ll~T_c$, which indicates a fully-open superconducting gap. Our analysis shows that a single gap $s$-wave model is sufficient to describe both the superfluid density $rho_s(T)$ and $C_e(T)$ results, with a fitted gap magnitude larger than the weak coupling BCS value, providing evidence for fully-gapped superconductivity in Re$_6$Zr with moderate coupling.



rate research

Read More

123 - H. Su , Z. Y. Nie , F. Du 2021
We report an investigation of the superconducting properties of the hexagonal noncentrosymmetric compound LaPdIn. Electrical resistivity, specific heat and ac susceptibility measurements demonstrate the presence of bulk superconductivity below $T_c$ = 1.6 K. The specific heat, together with the penetration depth measured using transverse-field muon spin rotation and the tunnel diode oscillator based method, are well described by single gap $s$-wave superconductivity, with a gap magnitude of 1.8$k_BT_c$. From zero-field muon spin relaxation results no evidence is found for the spontaneous emergence of magnetic fields in the superconducting state, indicating that time-reversal symmetry is preserved. Band structure calculations reveal that there is a relatively weak effect of antisymmetric spin-orbit coupling on the electronic bands near the Fermi level, which is consistent with there being negligible singlet-triplet mixing due to broken inversion symmetry. On the other hand, isostructural LuPdIn and LaPtIn do not exhibit superconductivity down to 0.4 K, which may be due to these systems having a smaller density of states at the Fermi level.
We report the magnetic and superconducting properties of locally noncentrosymmetric SrPtAs obtained by muon-spin-rotation/relaxation (muSR) measurements. Zero-field muSR reveals the occurrence of small spontaneous static magnetic fields with the onset of superconductivity. This finding suggests that the superconducting state of SrPtAs breaks time-reversal symmetry. The superfluid density as determined by transverse field muSR is nearly flat approaching T = 0 K proving the absence of extended nodes in the gap function. By symmetry, several superconducting states supporting time-reversal symmetry breaking in SrPtAs are allowed. Out of these, a dominantly d + id (chiral d-wave) order parameter is most consistent with our experimental data.
432 - A. Wang , Z. Y. Nie , F. Du 2021
Evidence for broken time reversal symmetry (TRS) has been found in the superconducting states of the $R_5$Rh$_6$Sn$_{18}$ (R = Sc, Y, Lu) compounds with a centrosymmetric caged crystal structure, but the origin of this phenomenon is unresolved. Here we report neutron diffraction measurements of single crystals with $R$=Lu, as well as measurements of the temperature dependence of the magnetic penetration depth using a self-induced tunnel diode-oscillator (TDO) based technique, together with band structure calculations using density functional theory. Neutron diffraction measurements reveal that the system crystallizes in a tetragonal caged structure, and that one of nominal Lu sites in the Lu$_5$Rh$_6$Sn$_{18}$ structure is occupied by Sn, yielding a composition Lu$_{5-x}$Rh$_6$Sn$_{18+x}$ ($x=1$). The low temperature penetration depth shift $Deltalambda(T)$ exhibits an exponential temperature dependence below around $0.3T_c$, giving clear evidence for fully gapped superconductivity. The derived superfluid density is reasonably well accounted for by a single gap $s$-wave model, whereas agreement cannot be found for models of TRS breaking states with two-component order parameters. Moreover, band structure calculations reveal multiple bands crossing the Fermi level, and indicate that the aforementioned TRS breaking states would be expected to have nodes on the Fermi surface, in constrast to the observations.
Over the last years a lot of theoretical and experimental efforts have been made to find states with broken time reversal symmetry (BTRS) in multi-band superconductors. In particular, it was theoretically proposed that in the Ba$_{1-x}$K$_{x}$Fe$_2$As$_2$ system either an $s+is$ or an $s+id$ BTRS state may exist at high doping levels in a narrow region of the phase diagram. Here we report the observation of an enhanced zero field muon spin relaxation rate below the superconducting transition temperature for a high quality crystalline sample with $x approx$ 0.73. This indicates that indeed the time reversal symmetry is broken in superconducting Ba$_{1-x}$K$_{x}$Fe$_2$As$_2$ at this doping level.
We report the electronic structure, synthesis, and measurements of the magnetic, transport, and thermal properties of the polycrystalline noncentrosymmetric compound Re$_{6}$Zr. We observed a bulk superconducting transition at temperature $T_{c}$ $sim$ 6.7 K, and measured the resistivity, heat capacity, thermal conductivity, and the London penetration depth below the transition, as well as performed doping and pressure studies. From these measurements we extracted the critical field, and the superconducting parameters of Re$_{6}$Zr. Our measurements indicate a relatively weak to moderate contribution from a triplet component to the order parameter, and favor a full superconducting gap, although we cannot exclude the existence of point nodes based on our data.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا