No Arabic abstract
Shells, when confined, can deform in a broad assortment of shapes and patterns, often quite dissimilar to what is produced by their flat counterparts (plates). In this work we discuss the morphological landscape of shells deposited on a fluid substrate. Floating shells spontaneously buckle to accommodate the natural excess of projected area and, depending on their intrinsic properties, structured wrinkling configurations emerge. We examine the mechanics of these instabilities and provide a theoretical framework to link the geometry of the shell with a space-dependent confinement. Finally, we discuss the potential of harnessing geometry and intrinsic curvature as new tools for controlled fabrication of patterns on thin surfaces.
We present in this paper a detailed analysis of the flexoelectric instability of a planar nematic layer in the presence of an alternating electric field (frequency $omega$), which leads to stripe patterns (flexodomains) in the plane of the layer. This equilibrium transition is governed by the free energy of the nematic which describes the elasticity with respects to the orientational degrees of freedom supplemented by an electric part. Surprisingly the limit $omega to 0$ is highly singular. In distinct contrast to the dc-case, where the patterns are stationary and time-independent, they appear at finite, small $omega$ periodically in time as sudden bursts. Flexodomains are in competition with the intensively studied electro-hydrodynamic instability in nematics, which presents a non-equilibrium dissipative transition. It will be demonstrated that $omega$ is a very convenient control parameter to tune between flexodomains and convection patterns, which are clearly distinguished by the orientation of their stripes.
Protein pattern formation is essential for the spatial organization of many intracellular processes like cell division, flagellum positioning, and chemotaxis. A prominent example of intracellular patterns are the oscillatory pole-to-pole oscillations of Min proteins in textit{E. coli} whose biological function is to ensure precise cell division. Cell polarization, a prerequisite for processes such as stem cell differentiation and cell polarity in yeast, is also mediated by a diffusion-reaction process. More generally, these functional modules of cells serve as model systems for self-organization, one of the core principles of life. Under which conditions spatio-temporal patterns emerge, and how these patterns are regulated by biochemical and geometrical factors are major aspects of current research. Here we review recent theoretical and experimental advances in the field of intracellular pattern formation, focusing on general design principles and fundamental physical mechanisms.
Predicting the large-amplitude deformations of thin elastic sheets is difficult due to the complications of self-contact, geometric nonlinearities, and a multitude of low-lying energy states. We study a simple two-dimensional setting where an annular polymer sheet floating on an air-water interface is subjected to different tensions on the inner and outer rims. The sheet folds and wrinkles into many distinct morphologies that break axisymmetry. These states can be understood within a recent geometric approach for determining the gross shape of extremely bendable yet inextensible sheets by extremizing an appropriate area functional. Our analysis explains the remarkable feature that the observed buckling transitions between wrinkled and folded shapes are insensitive to the bending rigidity of the sheet.
We have studied the collective motion of polar active particles confined to ellipsoidal surfaces. The geometric constraints lead to the formation of vortices that encircle surface points of constant curvature (umbilics). We have found that collective motion patterns are particularly rich on ellipsoids, with four umbilics where vortices tend to be located near pairs of umbilical points to minimize their interaction energy. Our results provide a new perspective on the migration of living cells, which most likely use the information provided from the curved substrate geometry to guide their collective motion.
Within the framework of continuum theory, we draw a parallel between ferromagnetic materials and nematic liquid crystals confined on curved surfaces, which are both characterized by local interaction and anchoring potentials. We show that the extrinsic curvature of the shell combined with the out-of-plane component of the director field gives rise to chirality effects. This interplay produces an effective energy term reminiscent of the chiral term in cholesteric liquid crystals, with the curvature tensor acting as a sort of anisotropic helicity. We discuss also how the different nature of the order parameter, a vector in ferromagnets and a tensor in nematics, yields different textures on surfaces with the same topology as the sphere. In particular, we show that the extrinsic curvature governs the ground state configuration on a nematic spherical shell, favouring two antipodal disclinations of charge +1 on small particles and four $+1/2$ disclinations of charge located at the vertices of a square inscribed in a great circle on larger particles.