Do you want to publish a course? Click here

Protein Pattern Formation

380   0   0.0 ( 0 )
 Added by Jacob Halatek
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Protein pattern formation is essential for the spatial organization of many intracellular processes like cell division, flagellum positioning, and chemotaxis. A prominent example of intracellular patterns are the oscillatory pole-to-pole oscillations of Min proteins in textit{E. coli} whose biological function is to ensure precise cell division. Cell polarization, a prerequisite for processes such as stem cell differentiation and cell polarity in yeast, is also mediated by a diffusion-reaction process. More generally, these functional modules of cells serve as model systems for self-organization, one of the core principles of life. Under which conditions spatio-temporal patterns emerge, and how these patterns are regulated by biochemical and geometrical factors are major aspects of current research. Here we review recent theoretical and experimental advances in the field of intracellular pattern formation, focusing on general design principles and fundamental physical mechanisms.

rate research

Read More

We describe a model of cytoskeletal mechanics based on the force-induced conformational change of protein cross-links in a stressed polymer network. Slow deformation of simulated networks containing cross-links that undergo repeated, serial domain unfolding leads to an unusual state--with many cross-links accumulating near the critical force for further unfolding. Thermal activation of these links gives rise to power-law rheology resembling the previously unexplained mechanical response of living cells. Moreover, we hypothesize that such protein cross-links function as biochemical mechano-sensors of cytoskeletal deformation.
Dynamic patterning of specific proteins is essential for the spatiotemporal regulation of many important intracellular processes in procaryotes, eucaryotes, and multicellular organisms. The emergence of patterns generated by interactions of diffusing proteins is a paradigmatic example for self-organization. In this article we review quantitative models for intracellular Min protein patterns in E. coli, Cdc42 polarization in S. cerevisiae, and the bipolar PAR protein patterns found in C. elegans. By analyzing the molecular processes driving these systems we derive a theoretical perspective on general principles underlying self-organized pattern formation. We argue that intracellular pattern formation is not captured by concepts such as activators, inhibitors, or substrate-depletion. Instead, intracellular pattern formation is based on the redistribution of proteins by cytosolic diffusion, and the cycling of proteins between distinct conformational states. Therefore, mass-conserving reaction-diffusion equations provide the most appropriate framework to study intracellular pattern formation. We conclude that directed transport, e.g. cytosolic diffusion along an actively maintained cytosolic gradient, is the key process underlying pattern formation. Thus the basic principle of self-organization is the establishment and maintenance of directed transport by intracellular protein dynamics.
Sucralose is a commonly employed artificial sweetener that appears to destabilize protein native structures. This is in direct contrast to the bio-preservative nature of its natural counterpart, sucrose, which enhances the stability of biomolecules against environmental stress. We have further explored the molecular interactions of sucralose as compared to sucrose to illuminate the origin of the differences in their bio-preservative efficacy. We show that the mode of interactions of sucralose and sucrose in bulk solution differ subtly using hydration dynamics measurement and computational simulation. Sucralose does not appear to disturb the native state of proteins for moderate concentrations (<0.2 M) at room temperature. However, as the concentration increases, or in the thermally stressed state, sucralose appears to differ in its interactions with protein leading to the reduction of native state stability. This difference in interaction appears weak. We explored the difference in the preferential exclusion model using time-resolved spectroscopic techniques and observed that both molecules appear to be effective reducers of bulk hydration dynamics. However, the chlorination of sucralose appears to slightly enhance the hydrophobicity of the molecule, which reduces the preferential exclusion of sucralose from the protein-water interface. The weak interaction of sucralose with hydrophobic pockets on the protein surface differs from the behavior of sucrose. We experimentally followed up upon the extent of this weak interaction using isothermal titration calorimetry (ITC) measurements. We propose this as a possible origin for the difference in their bio-preservative properties.
Shells, when confined, can deform in a broad assortment of shapes and patterns, often quite dissimilar to what is produced by their flat counterparts (plates). In this work we discuss the morphological landscape of shells deposited on a fluid substrate. Floating shells spontaneously buckle to accommodate the natural excess of projected area and, depending on their intrinsic properties, structured wrinkling configurations emerge. We examine the mechanics of these instabilities and provide a theoretical framework to link the geometry of the shell with a space-dependent confinement. Finally, we discuss the potential of harnessing geometry and intrinsic curvature as new tools for controlled fabrication of patterns on thin surfaces.
Formation of spatial patterns of cells is a recurring theme in biology and often depends on regulated cell motility. Motility of M. xanthus depends on two motility machineries: the S-engine and A-engine. Moving M. xanthus cells can organize into spreading colonies or spore-filled fruiting bodies depending on their nutritional status. To understand these two pattern formation processes and the contributions by the two motility machineries, as well as cell reversal, we analyze spatial self-organization in 3 strains: i) a mutant that moves unidirectionally without reversing by the A-motility system only, ii) a unidirectional mutant that is also equipped with the S-motility system, and iii) the wild-type that, in addition to the two motility systems, reverses its direction of movement. The mutant moving by the A-engine illustrates that collective motion in the form of large moving clusters can arise in gliding bacteria due to steric interactions of the rod-shaped cells, without the need of invoking any biochemical signal regulation. The two-engine strain mutant reveals that the same phenomenon emerges when both motility systems are present, and as long as cells exhibit unidirectional motion only. From the study of these two strains, we conclude that unidirectional cell motion induces the formation of large moving clusters at low and intermediate densities, while it results into vortex formation at very high densities. These findings are consistent with what is known from self-propelled rods which strongly suggests that the combined effect of self-propulsion and volume exclusion interactions is the pattern formation mechanism leading to the observed phenomena. In addition, we learn that when cells reverse, as observed in the wild-type, cells form small but strongly elongated clusters and self-organize into a mesh-like structure at high enough densities.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا