Do you want to publish a course? Click here

CAMELOT: Cubesats Applied for MEasuring and LOcalising Transients - Mission Overview

65   0   0.0 ( 0 )
 Added by Andras Pal Mr.
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We propose a fleet of nanosatellites to perform an all-sky monitoring and timing based localisation of gamma-ray transients. The fleet of at least nine 3U cubesats shall be equipped with large and thin CsI(Tl) scintillator based soft gamma-ray detectors read out by multi-pixel photon counters. For bright short gamma-ray bursts (GRBs), by cross-correlating their light curves, the fleet shall be able to determine the time difference of the arriving GRB signal between the satellites and thus determine the source position with an accuracy of $sim10^prime$. This requirement demands precise time synchronization and accurate time stamping of the detected gamma-ray photons, which will be achieved by using on-board GPS receivers. Rapid follow up observations at other wavelengths require the capability for fast, nearly simultaneous downlink of data using a global inter-satellite communication network. In terms of all-sky coverage, the proposed fleet will outperform all GRB monitoring missions.



rate research

Read More

111 - S. Lacour , M. Nowak , P. Bourget 2018
SAGE (SagnAc interferometer for Gravitational wavE) is a fast track project for a space observatory based on multiple 12-U CubeSats in geostationary orbit. The objective of this project is to create a Sagnac interferometer with 73000 km circular arms. The geometry of the interferometer makes it especially sensitive to circularly polarized gravitational waves at frequency close to 1 Hz. The nature of the Sagnac measurement makes it almost insensitive to position error, allowing spacecrafts in ballistic trajectory. The light source and recombination units of the interferometer are based on compact fibered technologies, without the need of an optical bench. The main limitation would come from non-gravitational acceleration of the spacecraft. However, conditionally upon our ability to post-process the effect of solar wind, solar pressure and thermal expansion, we would detect gravitational waves with strains down to 10^-21 over a few days of observation.
Due to recent advances in nanosatellite technology, it is now feasible to integrate scintillators with an effective area of hundreds of square-centimeters on a single three-unit cubesat. We present the early test results for the digital payload electronics developed for the proposed CAMELOT (Cubesats Applied for MEasuring and LOcalising Transients) mission. CAMELOT is a fleet of nanosatellites intended to do full-sky monitoring and perform accurate timing-based localization of gamma-ray transients. Here we present the early results on the GPS timestamping capabilities of the CAMELOT payload electronics, concluding that the investigated setup is capable to timestamp the received gamma-ray photons with an accuracy and precision better than 0.02 millisecond, which corresponds to a timing based localization accuracy of $sim 3.5^{prime}$. Further refinements will likely allow us to improve the timing accuracy down to the sub-microsecond level.
A fleet of nanosatellites using precise timing synchronization provided by the Global Positioning System is a new concept for monitoring the gamma-ray sky that can achieve both all-sky coverage and good localization accuracy. We are proposing this new concept for the mission CubeSats Applied for MEasuring and LOcalising Transients (CAMELOT). The differences in photon arrival times at each satellite are to be used for source localization. Detectors with good photon statistics and the development of a localization algorithm capable of handling a large number of satellites are both essential for this mission. Large, thin CsI scintillator plates are the current candidates for the detectors because of their high light yields. It is challenging to maximize the light-collection efficiency and to understand the position dependence of such thin plates. We have found a multi-channel readout that uses the coincidence technique to be very effective in increasing the light output while keeping a similar noise level to that of a single channel readout. Based on such a detector design, we have developed a localization algorithm for this mission and have found that we can achieve a localization accuracy better than 20 arc minutes and a rate of about 10 short gamma-ray bursts per year.
CubeSats have the potential to expand astrophysical discovery space, complementing ground-based electromagnetic and gravitational-wave observatories. The CubeSat design specifications help streamline delivery of instrument payloads to space. CubeSat planners have more options for tailoring orbits to fit observational needs and may have more flexibility in rapidly rescheduling observations to respond to transients. With over 1000 CubeSats launched, there has been a corresponding increase in the availability and performance of commercial-off-the-shelf (COTS) components compatible with the CubeSat standards, from solar panels and power systems to reaction wheels for three axis stabilization and precision attitude control. Commercially available components can reduce cost CubeSat missions, allowing more resources to be directed toward scientific instrument payload development and technology demonstrations.
125 - P. Rosati , S. Borgani , R. Gilli 2010
The Wide Field X-Ray Telescope (WFXT) is a medium-class mission designed to be 2-orders-of-magnitude more sensitive than any previous or planned X-ray mission for large area surveys and to match in sensitivity the next generation of wide-area optical, IR and radio surveys. Using an innovative wide-field X-ray optics design, WFXT provides a field of view of 1 square degree (10 times Chandra) with an angular resolution of 5 (Half Energy Width, HEW) nearly constant over the entire field of view, and a large collecting area (up to 1 m^2 at 1 keV, > 10x Chandra) over the 0.1-7 keV band. WFXTs low-Earth orbit also minimizes the particle background. In five years of operation, WFXT will carry out three extragalactic surveys at unprecedented depth and address outstanding questions in astrophysics, cosmology and fundamental physics. In this article, we illustrate the mission concept and the connection between science requirements and mission parameters.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا