Do you want to publish a course? Click here

Spin Proximity Effects in Graphene/Topological Insulator Heterostructures

97   0   0.0 ( 0 )
 Added by Stephan Roche
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Enhancing the spin-orbit interaction in graphene, via proximity effects with topological insulators, could create a novel 2D system that combines nontrivial spin textures with high electron mobility. In order to engineer practical spintronics applications with such graphene/topological insulator (Gr/TI) heterostructures, an understanding of the hybrid spin-dependent properties is essential. {However to date, despite the large number of experimental studies on Gr/TI heterostructures reporting a great variety of remarkable (spin) transport phenomena, little is known about the true nature of the spin texture of the interface states as well as their role on the measured properties. Here we use {it ab initio} simulations and tight-binding models to determine the precise spin texture of electronic states in graphene interfaced with a Bi$_2$Se$_3$ topological insulator. Our calculations predict the emergence of a giant spin lifetime anisotropy in the graphene layer, which should be a measurable hallmark of spin transport in Gr/TI heterostructures, and suggest novel types of spin devices



rate research

Read More

Topological insulators (TI) are bulk insulators that possess robust chiral conducting states along their interfaces with normal insulators. A tremendous research effort has recently been devoted to TI-based heterostructures, in which conventional proximity effects give rise to many exotic physical phenomena. Here we establish the potential existence of topological proximity effects at the interface of a topological graphene nanoribbon (GNR) and a normal GNR. Specifically, we show that the location of the topological edge states exhibits versatile tunability as a function of the interface orientation, as well as the strengths of the interface coupling and spin-orbit coupling in the normal GNR. For zigzag and bearded GNRs, the topological edge state can be tuned to be either at the interface or outer edge of the normal ribbon. For armchair GNR, the potential location of the topological edge state can be further enriched to be at the edge of or within the normal ribbon, at the interface, or diving into the topological GNR. We also discuss potential experimental realization of the predicted topological proximity effects, which may pave the way for integrating the salient functionality of TI and graphene in future device applications.
The possible realization of dissipationless chiral edge current in a topological insulator / magnetic insulator heterostructure is based on the condition that the magnetic proximity exchange coupling at the interface is dominated by the Dirac surface states of the topological insulator. Here we report a polarized neutron reflectometry observation of Dirac electrons mediated magnetic proximity effect in a bulk-insulating topological insulator (Bi$_{0.2}$Sb$_{0.8}$)$_{2}$Te$_{3}$ / magnetic insulator EuS heterostructure. We are able to maximize the proximity induced magnetism by applying an electrical back gate to tune the Fermi level of topological insulator to be close to the charge neutral point. A phenomenological model based on diamagnetic screening is developed to explain the suppressed proximity induced magnetism at high carrier density. Our work paves the way to utilize the magnetic proximity effect at the topological insulator/magnetic insulator hetero-interface for low-power spintronic applications.
The control of a ferromagnets magnetization via only electric currents requires the efficient generation of current-driven spin-torques. In magnetic structures based on topological insulators (TIs) current-induced spin-orbit torques can be generated. Here we show that the addition of graphene, or bilayer graphene, to a TI-based magnetic structure greatly enhances the current-induced spin density accumulation and significantly reduces the amount of power dissipated. We find that this enhancement can be as high as a factor of 100, giving rise to a giant Edelstein effect. Such a large enhancement is due to the high mobility of graphene (bilayer graphene) and to the fact that the graphene (bilayer graphene) sheet very effectively screens charge impurities, the dominant source of disorder in topological insulators. Our results show that the integration of graphene in spintronics devices can greatly enhance their performance and functionalities.
The emergence of topological order in graphene is in great demand for the realization of quantum spin Hall states. Recently, it is theoretically proposed that the spin textures of surface states in topological insulator can be directly transferred to graphene by means of proximity effect. Here we report the observations of the topological proximity effect in the graphene-topological insulator Bi2Se3 heterojunctions via magnetotransport measurements. The coupling between the p_z orbitals of graphene and the p orbitals of surface states on the Bi2Se3 bottom surface can be enhanced by applying perpendicular negative magnetic field, resulting in a giant negative magnetoresistance at the Dirac point up to about -91%. An obvious resistivity dip in the transfer curve at the Dirac point is also observed in the hybrid devices, which is consistent with the theoretical predictions of the distorted Dirac bands with unique spin textures inherited from Bi2Se3 surface states.
We reveal a proximity effect between a topological band (Chern) insulator described by a Haldane model and spin-polarized Dirac particles of a graphene layer. Coupling weakly the two systems through a tunneling term in the bulk, the topological Chern insulator induces a gap and an opposite Chern number on the Dirac particles at half-filling resulting in a sign flip of the Berry curvature at one Dirac point. We study different aspects of the bulk-edge correspondence and present protocols to observe the evolution of the Berry curvature as well as two counter-propagating (protected) edge modes with different velocities. In the strong-coupling limit, the energy spectrum shows flat bands. Therefore we build a perturbation theory and address further the bulk-edge correspondence. We also show the occurrence of a topological insulating phase with Chern number one when only the lowest band is filled. We generalize the effect to Haldane bilayer systems with asymmetric Semenoff masses. We propose an alternative definition of the topological invariant on the Bloch sphere.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا