Do you want to publish a course? Click here

Benchmarking of quantum processors with random circuits

109   0   0.0 ( 0 )
 Added by James Wootton
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Quantum processors with sizes in the 10-100 qubit range are now increasingly common. However, with increased size comes increased complexity for benchmarking. The effectiveness of a given device may vary greatly between different tasks, and will not always be easy to predict from single and two qubit gate fidelities. For this reason, it is important to assess processor quality for a range of important tasks. In this work we propose and implement tests based on random quantum circuits. These are used to evaluate multiple different superconducting qubit devices, with sizes from 5 to 19 qubits, from two hardware manufacturers: IBM Research and Rigetti. The data is analyzed to give a quantitive description of how the devices perform. We also describe how it can be used for a qualititive description accessible to the layperson, by being played as a game.



rate research

Read More

337 - R. K. Naik , N. Leung , S. Chakram 2017
Qubit connectivity is an important property of a quantum processor, with an ideal processor having random access -- the ability of arbitrary qubit pairs to interact directly. Here, we implement a random access superconducting quantum information processor, demonstrating universal operations on a nine-bit quantum memory, with a single transmon serving as the central processor. The quantum memory uses the eigenmodes of a linear array of coupled superconducting resonators. The memory bits are superpositions of vacuum and single-photon states, controlled by a single superconducting transmon coupled to the edge of the array. We selectively stimulate single-photon vacuum Rabi oscillations between the transmon and individual eigenmodes through parametric flux modulation of the transmon frequency, producing sidebands resonant with the modes. Utilizing these oscillations for state transfer, we perform a universal set of single- and two-qubit gates between arbitrary pairs of modes, using only the charge and flux bias of the transmon. Further, we prepare multimode entangled Bell and GHZ states of arbitrary modes. The fast and flexible control, achieved with efficient use of cryogenic resources and control electronics, in a scalable architecture compatible with state-of-the-art quantum memories is promising for quantum computation and simulation.
Random quantum circuits have played a central role in establishing the computational advantages of near-term quantum computers over their conventional counterparts. Here, we use ensembles of low-depth random circuits with local connectivity in $Dge 1$ spatial dimensions to generate quantum error-correcting codes. For random stabilizer codes and the erasure channel, we find strong evidence that a depth $O(log N)$ random circuit is necessary and sufficient to converge (with high probability) to zero failure probability for any finite amount below the optimal erasure threshold, set by the channel capacity, for any $D$. Previous results on random circuits have only shown that $O(N^{1/D})$ depth suffices or that $O(log^3 N)$ depth suffices for all-to-all connectivity ($D to infty$). We then study the critical behavior of the erasure threshold in the so-called moderate deviation limit, where both the failure probability and the distance to the optimal threshold converge to zero with $N$. We find that the requisite depth scales like $O(log N)$ only for dimensions $D ge 2$, and that random circuits require $O(sqrt{N})$ depth for $D=1$. Finally, we introduce an expurgation algorithm that uses quantum measurements to remove logical operators that cause the code to fail by turning them into additional stabilizers or gauge operators. With such targeted measurements, we can achieve sub-logarithmic depth in $Dge 2$ below capacity without increasing the maximum weight of the check operators. We find that for any rate beneath the capacity, high-performing codes with thousands of logical qubits are achievable with depth 4-8 expurgated random circuits in $D=2$ dimensions. These results indicate that finite-rate quantum codes are practically relevant for near-term devices and may significantly reduce the resource requirements to achieve fault tolerance for near-term applications.
We investigate a hybrid quantum circuit where ensembles of cold polar molecules serve as long-lived quantum memories and optical interfaces for solid state quantum processors. The quantum memory realized by collective spin states (ensemble qubit) is coupled to a high-Q stripline cavity via microwave Raman processes. We show that for convenient trap-surface distances of a few $mu$m, strong coupling between the cavity and ensemble qubit can be achieved. We discuss basic quantum information protocols, including a swap from the cavity photon bus to the molecular quantum memory, and a deterministic two qubit gate. Finally, we investigate coherence properties of molecular ensemble quantum bits.
133 - Ramis Movassagh 2019
As Moores law reaches its limits, quantum computers are emerging with the promise of dramatically outperforming classical computers. We have witnessed the advent of quantum processors with over $50$ quantum bits (qubits), which are expected to be beyond the reach of classical simulation. Quantum supremacy is the event at which the old Extended Church-Turing Thesis is overturned: A quantum computer performs a task that is practically impossible for any classical (super)computer. The demonstration requires both a solid theoretical guarantee and an experimental realization. The lead candidate is Random Circuit Sampling (RCS), which is the task of sampling from the output distribution of random quantum circuits. Google recently announced a $53-$qubit experimental demonstration of RCS. Soon after, classical algorithms appeared that challenge the supremacy of random circuits by estimating their outputs. How hard is it to classically simulate the output of random quantum circuits? We prove that estimating the output probabilities of random quantum circuits is formidably hard ($#P$-Hard) for any classical computer. This makes RCS the strongest candidate for demonstrating quantum supremacy relative to all other proposals. The robustness to the estimation error that we prove may serve as a new hardness criterion for the performance of classical algorithms. To achieve this, we introduce the Cayley path interpolation between any two gates of a quantum computation and convolve recent advances in quantum complexity and information with probability and random matrices. Furthermore, we apply algebraic geometry to generalize the well-known Berlekamp-Welch algorithm that is widely used in coding theory and cryptography. Our results imply that there is an exponential hardness barrier for the classical simulation of most quantum circuits.
The linear cross-entropy benchmark (Linear XEB) has been used as a test for procedures simulating quantum circuits. Given a quantum circuit $C$ with $n$ inputs and outputs and purported simulator whose output is distributed according to a distribution $p$ over ${0,1}^n$, the linear XEB fidelity of the simulator is $mathcal{F}_{C}(p) = 2^n mathbb{E}_{x sim p} q_C(x) -1$ where $q_C(x)$ is the probability that $x$ is output from the distribution $C|0^nrangle$. A trivial simulator (e.g., the uniform distribution) satisfies $mathcal{F}_C(p)=0$, while Googles noisy quantum simulation of a 53 qubit circuit $C$ achieved a fidelity value of $(2.24pm0.21)times10^{-3}$ (Arute et. al., Nature19). In this work we give a classical randomized algorithm that for a given circuit $C$ of depth $d$ with Haar random 2-qubit gates achieves in expectation a fidelity value of $Omega(tfrac{n}{L} cdot 15^{-d})$ in running time $textsf{poly}(n,2^L)$. Here $L$ is the size of the emph{light cone} of $C$: the maximum number of input bits that each output bit depends on. In particular, we obtain a polynomial-time algorithm that achieves large fidelity of $omega(1)$ for depth $O(sqrt{log n})$ two-dimensional circuits. To our knowledge, this is the first such result for two dimensional circuits of super-constant depth. Our results can be considered as an evidence that fooling the linear XEB test might be easier than achieving a full simulation of the quantum circuit.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا