Do you want to publish a course? Click here

Ab-initio simulations and measurements of the free-free opacity in Aluminum

61   0   0.0 ( 0 )
 Added by Patrick Hollebon Mr
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The free-free opacity in dense systems is a property that both tests our fundamental understanding of correlated many-body systems, and is needed to understand the radiative properties of high energy-density plasmas. Despite its importance, predictive calculations of the free-free opacity remain challenging even in the condensed matter phase for simple metals. Here we show how the free-free opacity can be modelled at finite-temperatures via time-dependent density functional theory, and illustrate the importance of including local field corrections, core polarization and self-energy corrections. Our calculations for ground-state Al are shown to agree well with experimental opacity measurements performed on the Artemis laser facility across a wide range of x-ray to ultraviolet wavelengths. We extend our calculations across the melt to the warm-dense matter regime, and find good agreement with advanced plasma models based on inverse bremsstrahlung at temperatures above 10 eV.



rate research

Read More

We describe a simple method to determine, from ab initio calculations, the complete orientation-dependence of interfacial free energies in solid-state crystalline systems. We illustrate the method with an application to precipitates in the Al-Ti alloy system. The method combines the cluster expansion formalism in its most general form (to model the systems energetics) with the inversion of the well-known Wulff construction (to recover interfacial energies from equilibrium precipitate shapes). Although the inverse Wulff construction only provides the relative magnitude of the various interfacial free energies, absolute free energies can be recovered from a calculation of a single, conveniently chosen, planar interface. The method is able to account for essentially all sources of entropy (arising from phonons, bulk point defects, as well as interface roughness) and is thus able to transparently handle both atomically smooth and rough interfaces. The approach expresses the resulting orientation-dependence of the interfacial properties using symmetry-adapted bases for general orientation-dependent quantities. As a by-product, this paper thus provides a simple and general method to generate such basis functions, which prove useful in a variety of other applications, for instance to represent the anisotropy of the so-called constituent strain elastic energy.
Warm dense matter (WDM) -- an exotic state of highly compressed matter -- has attracted high interest in recent years in astrophysics and for dense laboratory systems. At the same time, this state is extremely difficult to treat theoretically. This is due to the simultaneous appearance of quantum degeneracy, Coulomb correlations and thermal effects, as well as the overlap of plasma and condensed phases. Recent breakthroughs are due to the successful application of density functional theory (DFT) methods which, however, often lack the necessary accuracy and predictive capability for WDM applications. The situation has changed with the availability of the first textit{ab initio} data for the exchange-correlation free energy of the warm dense uniform electron gas (UEG) that were obtained by quantum Monte Carlo (QMC) simulations, for recent reviews, see Dornheim textit{et al.}, Phys. Plasmas textbf{24}, 056303 (2017) and Phys. Rep. textbf{744}, 1-86 (2018). In the present article we review recent further progress in QMC simulations of the warm dense UEG: namely, textit{ab initio} results for the static local field correction $G(q)$ and for the dynamic structure factor $S(q,omega)$. These data are of key relevance for the comparison with x-ray scattering experiments at free electron laser facilities and for the improvement of theoretical models. In the second part of this paper we discuss simulations of WDM out of equilibrium. The theoretical approaches include Born-Oppenheimer molecular dynamics, quantum kinetic theory, time-dependent DFT and hydrodynamics. Here we analyze strengths and limitations of these methods and argue that progress in WDM simulations will require a suitable combination of all methods. A particular role might be played by quantum hydrodynamics, and we concentrate on problems, recent progress, and possible improvements of this method.
We calculate the leading corrections to jet momentum broadening and medium-induced branching that arise from the velocity of the moving medium at first order in opacity. These results advance our knowledge of jet quenching and demonstrate how it couples to collective flow of the quark-gluon plasma in heavy-ion collisions and to the orbital motion of partons in cold nuclear matter in deep inelastic scattering at the electron-ion collider. We also compute the leading corrections to jet momentum broadening due to transverse gradients of temperature and density. We find that these effects lead to both anisotropic transverse momentum diffusion proportional to the medium velocity and anisotropic medium-induced radiation emitted preferentially in the direction of the flow. We isolate the relevant sub-eikonal corrections by working with jets composed of scalar particles with arbitrary color factors interacting with the medium by scalar QCD. Appropriate substitution of the color factors and light-front wave functions allow us to immediately apply the results to a range of processes including $q rightarrow q g$ branching in real QCD. The resulting general expressions can be directly coupled to hydrodynamic simulations on an event-by-event basis to study the correlations between jet quenching and the dynamics of various forms of nuclear matter.
Last few years have witnessed significant enhancement of thermoelectric figure of merit of lead telluride (PbTe) via nanostructuring. Despite the experimental progress, current understanding of the electron transport in PbTe is based on either band structure calculation using first principles with constant relaxation time approximation or empirical models, both relying on adjustable parameters obtained by fitting experimental data. Here, we report parameter-free first-principles calculation of electron and phonon transport properties of PbTe, including mode-by-mode electron-phonon scattering analysis, leading to detailed information on electron mean free paths and the contributions of electrons and phonons with different mean free paths to thermoelectric transport properties in PbTe. Such information will help to rationalize the use and optimization of nanosctructures to achieve high thermoelectric figure of merit.
We have investigated the ultracold interspecies scattering properties of metastable triplet He and Rb. We performed state-of-the-art ab initio calculations of the relevant interaction potential, and measured the interspecies elastic cross section for an ultracold mixture of metastable triplet $^4$He and $^{87}$Rb in a quadrupole magnetic trap at a temperature of 0.5 mK. Our combined theoretical and experimental study gives an interspecies scattering length $a_{4+87}=+17^{+1}_{-4}$ $a_0$, which prior to this work was unknown. More general, our work shows the possibility of obtaining accurate scattering lengths using ab initio calculations for a system containing a heavy, many-electron atom, such as Rb.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا