Do you want to publish a course? Click here

Electronic Properties of Substitutionally Boron-doped Graphene Nanoribbons on a Au(111) Surface

91   0   0.0 ( 0 )
 Added by Nacho Pascual
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

High quality graphene nanoribbons (GNRs) grown by on-surface synthesis strategies with atomic precision can be controllably doped by inserting heteroatoms or chemical groups in the molecular precursors. Here, we study the electronic structure of armchair GNRs substitutionally doped with di-boron moieties at the center, through a combination of scanning tunneling spectroscopy, angle-resolved photoemission, and density functional theory simulations. Boron atoms appear with a small displacement towards the surface signaling their stronger interaction with the metal. We find two boron-rich flat bands emerging as impurity states inside the GNR band gap, one of them particularly broadened after its hybridization with the gold surface states. In addition, the boron atoms shift the conduction and valence bands of the pristine GNR away from the gap edge, and leave unaffected the bands above and below, which become the new frontier bands and have negligible boron character. This is due to the selective mixing of boron states with GNR bands according to their symmetry. Our results depict that the GNRs band structure can be tuned by modifying the separation between di-boron moieties.



rate research

Read More

We present a study of graphene/substrate interactions on UHV-grown graphene islands with minimal surface contamination using emph{in situ} low-temperature scanning tunneling microscopy (STM). We compare the physical and electronic structure of the sample surface with atomic spatial resolution on graphene islands versus regions of bare Cu(111) substrate. We find that the Rydberg-like series of image potential states is shifted toward lower energy over the graphene islands relative to Cu(111), indicating a decrease in the local work function, and the resonances have a much smaller linewidth, indicating reduced coupling to the bulk. In addition, we show the dispersion of the occupied Cu(111) Shockley surface state is influenced by the graphene layer, and both the band edge and effective mass are shifted relative to bare Cu(111).
Quantum-dot states in graphene nanoribbons (GNR) were calculated using density-functional theory, considering the effect of the electric field of gate electrodes. The field is parallel to the GNR plane and was generated by an inhomogeneous charge sheet placed atop the ribbon. Varying the electric field allowed to observe the development of the GNR states and the formation of localized, quantum-dot-like states in the band gap. The calculation has been performed for armchair GNRs and for armchair ribbons with a zigzag section. For the armchair GNR a static dielectric constant of {epsilon} approx. 4 could be determined.
91 - L. Brey , H.A. Fertig 2006
We study the electronic states of narrow graphene ribbons (``nanoribbons) with zigzag and armchair edges. The finite width of these systems breaks the spectrum into an infinite set of bands, which we demonstrate can be quantitatively understood using the Dirac equation with appropriate boundary conditions. For the zigzag nanoribbon we demonstrate that the boundary condition allows a particle- and a hole-like band with evanescent wavefunctions confined to the surfaces, which continuously turn into the well-known zero energy surface states as the width gets large. For armchair edges, we show that the boundary condition leads to admixing of valley states, and the band structure is metallic when the width of the sample in lattice constant units is divisible by 3, and insulating otherwise. A comparison of the wavefunctions and energies from tight-binding calculations and solutions of the Dirac equations yields quantitative agreement for all but the narrowest ribbons.
The feature-rich electronic and magnetic properties of fluorine-doped graphene nanoribbons are investigated by the first-principles calculations. They arise from the cooperative or competitive relations among the significant chemical bonds, finite-size quantum confinement and edge structure. There exist C-C, C-F, and F-F bonds with the multi-orbital hybridizations. Fluorine adatoms can create the p-type metals or the concentration- and distribution-dependent semiconductors, depending on whether the $pi$ bonding is seriously suppressed by the top-site chemical bonding. Furthermore, five kinds of spin-dependent electronic and magnetic properties cover the non-magnetic and ferromagnetic metals, the non-magnetic semiconductors, and the anti-ferromagnetic semiconductors with/without the spin splitting. The diverse essential properties are clearly revealed in the spatial charge distribution, the spin density, and the orbital-projected density of states.
Chemically synthesized cove-type graphene nanoribbons (cGNRs) of different widths were brought into dispersion and drop-cast onto exfoliated hexagonal boron nitride (hBN) on a Si/SiO2 chip. With AFM we observed that the cGNRs form ordered domains aligned along the crystallographic axes of the hBN. Using electron beam lithography and metallization, we contacted the cGNRs with NiCr/Au, or Pd contacts and measured their I-V-characteristics. The transport through the ribbons was dominated by the Schottky behavior of the contacts between the metal and the ribbon.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا