No Arabic abstract
The skyrmion crystal (SkX) characterized by a multiple-q helical spin modulation has been reported as a unique topological state that competes with the single-q helimagnetic order in non-centrosymmetric materials. Here we report the discovery of a rich variety of multiple-q helimagnetic spin structures in the centrosymmetric cubic perovskite SrFeO3. On the basis of neutron diffraction measurements, we have identified two types of robust multiple-q topological spin structures that appear in the absence of external magnetic fields: an anisotropic double-q spin spiral and an isotropic quadruple-q spiral hosting a three-dimensional lattice of hedgehog singularities. The present system not only diversifies the family of SkX host materials, but furthermore provides an experimental missing link between centrosymmetric lattices and topological helimagnetic order. It also offers perspectives for integration of SkXs into oxide electronic devices.
A previously unreported Pb-based perovskite PbMoO$_3$ is obtained by high-pressure and high-temperature synthesis. This material crystallizes in the $Pmbar{3}m$ cubic structure at room temperature, making it distinct from typical Pb-based perovskite oxides with a structural distortion. PbMoO$_3$ exhibits a metallic behavior down to 0.1 K with an unusual $T$-sub linear dependence of the electrical resistivity. Moreover, a large specific heat is observed at low temperatures accompanied by a peak in $C_P/T^3$ around 10 K, in marked contrast to the isostructural metallic system SrMoO$_3$. These transport and thermal properties for PbMoO$_3$, taking into account anomalously large Pb atomic displacements detected through diffraction experiments, are attributed to a low-energy vibrational mode, associated with incoherent off-centering of lone pair Pb$^{2+}$ cations. We discuss the unusual behavior of the electrical resistivity in terms of a polaron-like conduction, mediated by the strong coupling between conduction electrons and optical phonons of the local low-energy vibrational mode.
Magnetic structures and the relationship between spin and charge-orbital orderings of an A-site ordered double-perovskite manganite SmBaMn2O6, an anticipated multiferroic material, were investigated by means of neutron diffraction. The spin arrangement in MnO2 planes perpendicular to the c axis is revealed to be the same as that in the A-site disordered half-doped manganites CE-type but the stacking pattern is found to be different displaying a unique twofold period. The temperature dependence of the superlattice magnetic and nuclear reflections clarifies that the antiferromagnetic spin ordering occurs at a temperature slightly lower than the temperature at which a rearrangement of the charge-orbital orderings occurs. The result evidences that the rearrangement leads the spin ordering. The intensities of the magnetic reflections are found to change across Tf = 10 K, suggesting a spin-flop by 90 [deg.] while keeping the Mn spin ordering pattern unchanged.
Single crystals of electron-doped SrMnO3 with a cubic perovskite structure have been systematically investigated as the most canonical (orbital-degenerate) double-exchange system, whose ground states have been still theoretically controversial. With only 1-2% electron doping by Ce substitution for Sr, a G-type antiferromagnetic metal with a tiny spin canting in a cubic lattice shows up as the ground state, where the Jahn-Teller polarons with heavy mass are likely to form. Further electron doping above 4%, however, replaces this isotropic metal with an insulator with tetragonal lattice distortion, accompanied by a quasi-one-dimensional 3z^2-r^2 orbital ordering with the C-type antiferromagnetism. The self-organization of such dilute polarons may reflect the critical role of the cooperative Jahn-Teller effect that is most effective in the originally cubic system.
We review recent studies of spin dynamics in rare-earth orthorhombic perovskite oxides of the type $RM$O$_3$, where $R$ is a rare-earth ion and $M$ is a transition-metal ion, using single-crystal inelastic neutron scattering (INS). After a short introduction to the magnetic INS technique in general, the results of INS experiments on both transition-metal and rare-earth subsystems for four selected compounds (YbFeO$_3$, TmFeO$_3$, YFeO$_3$, YbAlO$_3$) are presented. We show that the spectrum of magnetic excitations consists of two types of collective modes that are well separated in energy: gapped magnons with a typical bandwidth of $<$70 meV, associated with the antiferromagnetically (AFM) ordered transition-metal subsystem, and AFM fluctuations of $<$5 meV within the rare-earth subsystem, with no hybridization of those modes. We discuss the high-energy conventional magnon excitations of the 3$d$ subsystem only briefly, and focus in more detail on the spectacular dynamics of the rare-earth sublattice in these materials. We observe that the nature of the ground state and the low-energy excitation strongly depends on the identity of the rare-earth ion. In the case of non-Kramers ions, the low-symmetry crystal field completely eliminates the degeneracy of the multiplet state, creating a rich magnetic field-temperature phase diagram. In the case of Kramers ions, the resulting ground state is at least a doublet, which can be viewed as an effective quantum spin-1/2. Equally important is the fact that in Yb-based materials the nearest-neighbor exchange interaction dominates in one direction, despite the three-dimensional nature of the orthoperovskite crystal structure. The observation of a fractional spinon continuum and quantum criticality in YbAlO$_3$ demonstrates that Kramers rare-earth based magnets can provide realizations of various aspects of quantum low-dimensional physics.
Structural study of orbital-ordered manganite thin films has been conducted using synchrotron radiation, and a ground state electronic phase diagram is made. The lattice parameters of four manganite thin films, Nd0.5Sr0.5MnO3 (NSMO) or Pr0.5Sr0.5MnO3 (PSMO) on (011) surfaces of SrTiO3 (STO) or [(LaAlO3){0.3}(SrAl0.5Ta0.5O3){0.7}] (LSAT), were measured as a function of temperature. The result shows, as expected based on previous knowledge of bulk materials, that the films resistivity is closely related to their structures. Observed superlattice reflections indicate that NSMO thin films have an antiferro-orbital-ordered phase as their low-temperature phase while PSMO film on LSAT has a ferro-orbital-ordered phase, and that on STO has no orbital-ordered phase. A metallic ground state was observed only in films having a narrow region of A-site ion radius, while larger ions favor ferro-orbital-ordered structure and smaller ions stabilize antiferro-orbital-ordered structure. The key to the orbital-ordering transition in (011) film is found to be the in-plane displacement along [0-1 1] direction.