Do you want to publish a course? Click here

Low-energy spin dynamics in rare-earth perovskite oxides

99   0   0.0 ( 0 )
 Added by Andrey Podlesnyak
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We review recent studies of spin dynamics in rare-earth orthorhombic perovskite oxides of the type $RM$O$_3$, where $R$ is a rare-earth ion and $M$ is a transition-metal ion, using single-crystal inelastic neutron scattering (INS). After a short introduction to the magnetic INS technique in general, the results of INS experiments on both transition-metal and rare-earth subsystems for four selected compounds (YbFeO$_3$, TmFeO$_3$, YFeO$_3$, YbAlO$_3$) are presented. We show that the spectrum of magnetic excitations consists of two types of collective modes that are well separated in energy: gapped magnons with a typical bandwidth of $<$70 meV, associated with the antiferromagnetically (AFM) ordered transition-metal subsystem, and AFM fluctuations of $<$5 meV within the rare-earth subsystem, with no hybridization of those modes. We discuss the high-energy conventional magnon excitations of the 3$d$ subsystem only briefly, and focus in more detail on the spectacular dynamics of the rare-earth sublattice in these materials. We observe that the nature of the ground state and the low-energy excitation strongly depends on the identity of the rare-earth ion. In the case of non-Kramers ions, the low-symmetry crystal field completely eliminates the degeneracy of the multiplet state, creating a rich magnetic field-temperature phase diagram. In the case of Kramers ions, the resulting ground state is at least a doublet, which can be viewed as an effective quantum spin-1/2. Equally important is the fact that in Yb-based materials the nearest-neighbor exchange interaction dominates in one direction, despite the three-dimensional nature of the orthoperovskite crystal structure. The observation of a fractional spinon continuum and quantum criticality in YbAlO$_3$ demonstrates that Kramers rare-earth based magnets can provide realizations of various aspects of quantum low-dimensional physics.

rate research

Read More

Spin reorientation and magnetisation reversal are two important features of the rare-earth orthorhombic provskites ($RM$O$_{3}$s) that have attracted a lot of attention, though their exact microscopic origin has eluded researchers. Here, using density functional theory and classical atomistic spin dynamics we build a general Heisenberg magnetic model that allows to explore the whole phase diagram of the chromite and ferrite compounds and to scrutinize the microscopic mechanism responsible for spin reorientations and magnetisation reversals. We show that the occurrence of a magnetization reversal transition depends on the relative strength and sign of two interactions between rare-earth and transition-metal atoms: superexchange and Dzyaloshinsky-Moriya. We also conclude that the presence of a smooth spin reorientation transition between the so-called $Gamma_4$ and the $Gamma_2$ phases through a coexisting region, and the temperature range in which it occurs, depends on subtle balance of metal--metal (superexchange and Dzyaloshinsky-Moriya) and metal--rare-earth (Dzyaloshinsky-Moriya) couplings. In particular, we show that the intermediate coexistence region occurs because the spin sublattices rotate at different rates.
In this paper we report measurements of 1/f noise in a crystalline metallic oxide with perovskite structure down to 4.2K. The results show existence of localized excitations with average activation energy $approx$ 70-80 meV which produce peak in the noise at T $approx$ 35-40K. In addition, it shows clear evidence of tunnelling type two-level-systems (as in glasses) which show up in noise measurements below 30K.
90 - L. Petit , A. Svane , Z. Szotek 2005
The self-interaction-corrected local-spin-density approximation is used to describe the electronic structure of dioxides, REO$_2$, and sesquioxides, RE$_2$O$_3$, for the rare earths, RE=Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy and Ho. The valencies of the rare earth ions are determined from total energy minimization. We find Ce, Pr, Tb in their dioxides to have the tetravalent configuration, while for all the sesquioxides the trivalent groundstate configuration is found to be the most favourable. The calculated lattice constants for these valency configurations are in good agreement with experiment. Total energy considerations are exploited to show the link between oxidation and $f$-electron delocalization, and explain why, among the dioxides, only the CeO$_2$, PrO$_2$, and TbO$_2$ exist in nature. Tetravalent NdO$_2$ is predicted to exist as a metastable phase - unstable towards the formation of hexagonal Nd$_2$O$_3$.
We report a theoretical study of the non-linear magnetoelectric response of GdFeO$_3$ through an analytical approach combined with a Heisenberg model which is fitted against first-principles calculations. Our theory reproduces the non-linear change of polarization under applied magnetic field reported experimentally such that it allows to analyze the origin of the large responses in the different directions. We show that the non-linear character of the response in these materials originates from the fact that the antiferromagnetic order of Gd atoms changes non-linearly with respect to the applied magnetic field. Our model can be generalized to other materials in which the antiferromagnetic ordering breaks inversion symmetry.
Frustrated quantum magnets are expected to host many exotic quantum spin states like quantum spin liquid (QSL), and have attracted numerous interest in modern condensed matter physics. The discovery of the triangular lattice spin liquid candidate YbMgGaO$_4$ stimulated an increasing attention on the rare-earth-based frustrated magnets with strong spin-orbit coupling. Here we report the synthesis and characterization of a large family of rare-earth chalcogenides AReCh$_2$ (A = alkali or monovalent ions, Re = rare earth, Ch = O, S, Se). The family compounds share the same structure (R$bar{3}$m) as YbMgGaO$_4$, and antiferromagnetically coupled rare-earth ions form perfect triangular layers that are well separated along the $c$-axis. Specific heat and magnetic susceptibility measurements on NaYbO$_2$, NaYbS$_2$ and NaYbSe$_2$ single crystals and polycrystals, reveal no structural or magnetic transition down to 50mK. The family, having the simplest structure and chemical formula among the known QSL candidates, removes the issue on possible exchange disorders in YbMgGaO$_4$. More excitingly, the rich diversity of the family members allows tunable charge gaps, variable exchange coupling, and many other advantages. This makes the family an ideal platform for fundamental research of QSLs and its promising applications.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا