Do you want to publish a course? Click here

Advantages of a modular high-level quantum programming framework

82   0   0.0 ( 0 )
 Added by Damian S. Steiger
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

We review some of the features of the ProjectQ software framework and quantify their impact on the resulting circuits. The concise high-level language facilitates implementing even complex algorithms in a very time-efficient manner while, at the same time, providing the compiler with additional information for optimization through code annotation - so-called meta-instructions. We investigate the impact of these annotations for the example of Shors algorithm in terms of logical gate counts. Furthermore, we analyze the effect of different intermediate gate sets for optimization and how the dimensions of the resulting circuit depend on a smart choice thereof. Finally, we demonstrate the benefits of a modular compilation framework by implementing mapping procedures for one- and two-dimensional nearest neighbor architectures which we then compare in terms of overhead for different problem sizes.



rate research

Read More

Quantum computing exploits quantum phenomena such as superposition and entanglement to realize a form of parallelism that is not available to traditional computing. It offers the potential of significant computational speed-ups in quantum chemistry, materials science, cryptography, and machine learning. The dominant approach to programming quantum computers is to provide an existing high-level language with libraries that allow for the expression of quantum programs. This approach can permit computations that are meaningless in a quantum context; prohibits succinct expression of interaction between classical and quantum logic; and does not provide important constructs that are required for quantum programming. We present Q#, a quantum-focused domain-specific language explicitly designed to correctly, clearly and completely express quantum algorithms. Q# provides a type system, a tightly constrained environment to safely interleave classical and quantum computations; specialized syntax, symbolic code manipulation to automatically generate correct transformations of quantum operations, and powerful functional constructs which aid composition.
Parallel operations in conventional computing have proven to be an essential tool for efficient and practical computation, and the story is not different for quantum computing. Indeed, there exists a large body of works that study advantages of parallel implementations of quantum gates for efficient quantum circuit implementations. Here, we focus on the recently invented efficient, arbitrary, simultaneously entangling (EASE) gates, available on a trapped-ion quantum computer. Leveraging its flexibility in selecting arbitrary pairs of qubits to be coupled with any degrees of entanglement, all in parallel, we show a $n$-qubit Clifford circuit can be implemented using $6log(n)$ EASE gates, a $n$-qubit multiply-controlled NOT gate can be implemented using $3n/2$ EASE gates, and a $n$-qubit permutation can be implemented using six EASE gates. We discuss their implications to near-term quantum chemistry simulations and the state of the art pattern matching algorithm. Given Clifford + multiply-controlled NOT gates form a universal gate set for quantum computing, our results imply efficient quantum computation by EASE gates, in general.
Current quantum computer designs will not scale. To scale beyond small prototypes, quantum architectures will likely adopt a modular approach with clusters of tightly connected quantum bits and sparser connections between clusters. We exploit this clustering and the statically-known control flow of quantum programs to create tractable partitioning heuristics which map quantum circuits to modular physical machines one time slice at a time. Specifically, we create optimized mappings for each time slice, accounting for the cost to move data from the previous time slice and using a tunable lookahead scheme to reduce the cost to move to future time slices. We compare our approach to a traditional statically-mapped, owner-computes model. Our results show strict improvement over the static mapping baseline. We reduce the non-local communication overhead by 89.8% in the best case and by 60.9% on average. Our techniques, unlike many exact solver methods, are computationally tractable.
With the potential of quantum algorithms to solve intractable classical problems, quantum computing is rapidly evolving and more algorithms are being developed and optimized. Expressing these quantum algorithms using a high-level language and making them executable on a quantum processor while abstracting away hardware details is a challenging task. Firstly, a quantum programming language should provide an intuitive programming interface to describe those algorithms. Then a compiler has to transform the program into a quantum circuit, optimize it and map it to the target quantum processor respecting the hardware constraints such as the supported quantum operations, the qubit connectivity, and the control electronics limitations. In this paper, we propose a quantum programming framework named OpenQL, which includes a high-level quantum programming language and its associated quantum compiler. We present the programming interface of OpenQL, we describe the different layers of the compiler and how we can provide portability over different qubit technologies. Our experiments show that OpenQL allows the execution of the same high-level algorithm on two different qubit technologies, namely superconducting qubits and Si-Spin qubits. Besides the executable code, OpenQL also produces an intermediate quantum assembly code (cQASM), which is technology-independent and can be simulated using the QX simulator.
Quantum resource analysis is crucial for designing quantum circuits as well as assessing the viability of arbitrary (error-corrected) quantum computations. To this end, we introduce QUANTIFY, which is an open-source framework for the quantitative analysis of quantum circuits. It is based on Google Cirq and is developed with Clifford+T circuits in mind, and it includes the necessary methods to handle Toffoli+H and more generalised controlled quantum gates, too. Key features of QUANTIFY include: (1) analysis and optimisation methods which are compatible with the surface code, (2) choice between different automated (mixed polarity) Toffoli gate decompositions, (3) semi-automatic quantum circuit rewriting and quantum gate insertion methods that take into account known gate commutation rules, and (4) novel optimiser types that can be combined with different verification methods (e.g. truth table or circuit invariants like number of wires). For benchmarking purposes QUANTIFY includes quantum memory and quantum arithmetic circuits. Experimental results show that the frameworks performance scales to circuits with thousands of qubits.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا