No Arabic abstract
Sign problems in path integrals arise when different field configurations contribute with different signs or phases. Phase unwrapping describes a family of signal processing techniques in which phase differences between elements of a time series are integrated to construct non-compact unwrapped phase differences. By combining phase unwrapping with a cumulant expansion, path integrals with sign problems arising from phase fluctuations can be systematically approximated as linear combinations of path integrals without sign problems. This work explores phase unwrapping in zero-plus-one-dimensional complex scalar field theory. Results with improved signal-to-noise ratios for the spectrum of scalar field theory can be obtained from unwrapped phases, but the size of cumulant expansion truncation errors is found to be undesirably sensitive to the parameters of the phase unwrapping algorithm employed. It is argued that this numerical sensitivity arises from discretization artifacts that become large when phases fluctuate close to singularities of a complex logarithm in the definition of the unwrapped phase.
We study the nature of the phase diagram of three-dimensional lattice models in the presence of nonabelian gauge symmetries. In particular, we consider a paradigmatic model for the Higgs mechanism, lattice scalar chromodynamics with N_f flavors, characterized by a nonabelian SU(N_c) gauge symmetry. For N_f>1 (multiflavor case), it presents two phases separated by a transition line where a gauge-invariant order parameter condenses, being associated with the breaking of the residual global symmetry after gauging. The nature of the phase transition line is discussed within two field-theoretical approaches, the continuum scalar chromodynamics and the Landau-Ginzburg- Wilson (LGW) Phi4 approach based on a gauge-invariant order parameter. Their predictions are compared with simulation results for N_f=2, 3 and N_c = 2, 3, and 4. The LGW approach turns out to provide the correct picture of the critical behavior, unlike continuum scalar chromodynamics.
The fermion bag approach is a new method to tackle fermion sign problems in lattice field theories. Using this approach it is possible to solve a class of sign problems that seem unsolvable by traditional methods. The new solutions emerge when partition functions are written in terms of fermion bags and bosonic worldlines. In these new variables it is possible to identify hidden pairing mechanisms which lead to the solutions. The new solutions allow us for the first time to use Monte Carlo methods to solve a variety of interesting lattice field theories, thus creating new opportunities for understanding strongly correlated fermion systems.
This an English translation of a review of finite-density lattice QCD. The original version in Japanese appeared in Soryushiron Kenkyu Vol 31 (2020) No. 1.
We construct four kinds of Z3-symmetric three-dimentional (3-d) Potts models, each with different number of states at each site on a 3-d lattice, by extending the 3-d three-state Potts model. Comparing the ordinary Potts model with the four Z3-symmetric Potts models, we investigate how Z3 symmetry affects the sign problem and see how the deconfinement transition line changes in the $mu-kappa$ plane as the number of states increases, where $mu$ $(kappa)$ plays a role of chemical potential (temperature) in the models. We find that the sign problem is almost cured by imposing Z3 symmetry. This mechanism may happen in Z3-symmetric QCD-like theory. We also show that the deconfinement transition line has stronger $mu$-dependence with respect to increasing the number of states.
We consider the two-dimensional classical XY model on a square lattice in the thermodynamic limit using tensor renormalization group and precisely determine the critical temperature corresponding to the Berezinskii-Kosterlitz-Thouless (BKT) phase transition to be 0.89290(5) which is an improvement compared to earlier studies using tensor network methods.