Do you want to publish a course? Click here

Mix&Match - Agent Curricula for Reinforcement Learning

303   0   0.0 ( 0 )
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

We introduce Mix&Match (M&M) - a training framework designed to facilitate rapid and effective learning in RL agents, especially those that would be too slow or too challenging to train otherwise. The key innovation is a procedure that allows us to automatically form a curriculum over agents. Through such a curriculum we can progressively train more complex agents by, effectively, bootstrapping from solutions found by simpler agents. In contradistinction to typical curriculum learning approaches, we do not gradually modify the tasks or environments presented, but instead use a process to gradually alter how the policy is represented internally. We show the broad applicability of our method by demonstrating significant performance gains in three different experimental setups: (1) We train an agent able to control more than 700 actions in a challenging 3D first-person task; using our method to progress through an action-space curriculum we achieve both faster training and better final performance than one obtains using traditional methods. (2) We further show that M&M can be used successfully to progress through a curriculum of architectural variants defining an agents internal state. (3) Finally, we illustrate how a variant of our method can be used to improve agent performance in a multitask setting.



rate research

Read More

Reinforcement learning (RL) promises to enable autonomous acquisition of complex behaviors for diverse agents. However, the success of current reinforcement learning algorithms is predicated on an often under-emphasised requirement -- each trial needs to start from a fixed initial state distribution. Unfortunately, resetting the environment to its initial state after each trial requires substantial amount of human supervision and extensive instrumentation of the environment which defeats the purpose of autonomous reinforcement learning. In this work, we propose Value-accelerated Persistent Reinforcement Learning (VaPRL), which generates a curriculum of initial states such that the agent can bootstrap on the success of easier tasks to efficiently learn harder tasks. The agent also learns to reach the initial states proposed by the curriculum, minimizing the reliance on human interventions into the learning. We observe that VaPRL reduces the interventions required by three orders of magnitude compared to episodic RL while outperforming prior state-of-the art methods for reset-free RL both in terms of sample efficiency and asymptotic performance on a variety of simulated robotics problems.
This paper considers multi-agent reinforcement learning (MARL) in networked system control. Specifically, each agent learns a decentralized control policy based on local observations and messages from connected neighbors. We formulate such a networked MARL (NMARL) problem as a spatiotemporal Markov decision process and introduce a spatial discount factor to stabilize the training of each local agent. Further, we propose a new differentiable communication protocol, called NeurComm, to reduce information loss and non-stationarity in NMARL. Based on experiments in realistic NMARL scenarios of adaptive traffic signal control and cooperative adaptive cruise control, an appropriate spatial discount factor effectively enhances the learning curves of non-communicative MARL algorithms, while NeurComm outperforms existing communication protocols in both learning efficiency and control performance.
Multi-agent reinforcement learning systems aim to provide interacting agents with the ability to collaboratively learn and adapt to the behaviour of other agents. In many real-world applications, the agents can only acquire a partial view of the world. Here we consider a setting whereby most agents observations are also extremely noisy, hence only weakly correlated to the true state of the environment. Under these circumstances, learning an optimal policy becomes particularly challenging, even in the unrealistic case that an agents policy can be made conditional upon all other agents observations. To overcome these difficulties, we propose a multi-agent deep deterministic policy gradient algorithm enhanced by a communication medium (MADDPG-M), which implements a two-level, concurrent learning mechanism. An agents policy depends on its own private observations as well as those explicitly shared by others through a communication medium. At any given point in time, an agent must decide whether its private observations are sufficiently informative to be shared with others. However, our environments provide no explicit feedback informing an agent whether a communication action is beneficial, rather the communication policies must also be learned through experience concurrently to the main policies. Our experimental results demonstrate that the algorithm performs well in six highly non-stationary environments of progressively higher complexity, and offers substantial performance gains compared to the baselines.
Object-centric representations have recently enabled significant progress in tackling relational reasoning tasks. By building a strong object-centric inductive bias into neural architectures, recent efforts have improved generalization and data efficiency of machine learning algorithms for these problems. One problem class involving relational reasoning that still remains under-explored is multi-agent reinforcement learning (MARL). Here we investigate whether object-centric representations are also beneficial in the fully cooperative MARL setting. Specifically, we study two ways of incorporating an agent-centric inductive bias into our RL algorithm: 1. Introducing an agent-centric attention module with explicit connections across agents 2. Adding an agent-centric unsupervised predictive objective (i.e. not using action labels), to be used as an auxiliary loss for MARL, or as the basis of a pre-training step. We evaluate these approaches on the Google Research Football environment as well as DeepMind Lab 2D. Empirically, agent-centric representation learning leads to the emergence of more complex cooperation strategies between agents as well as enhanced sample efficiency and generalization.
This paper extends off-policy reinforcement learning to the multi-agent case in which a set of networked agents communicating with their neighbors according to a time-varying graph collaboratively evaluates and improves a target policy while following a distinct behavior policy. To this end, the paper develops a multi-agent version of emphatic temporal difference learning for off-policy policy evaluation, and proves convergence under linear function approximation. The paper then leverages this result, in conjunction with a novel multi-agent off-policy policy gradient theorem and recent work in both multi-agent on-policy and single-agent off-policy actor-critic methods, to develop and give convergence guarantees for a new multi-agent off-policy actor-critic algorithm.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا