Do you want to publish a course? Click here

Understanding Meanings in Multilingual Customer Feedback

278   0   0.0 ( 0 )
 Added by Alberto Poncelas
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Understanding and being able to react to customer feedback is the most fundamental task in providing good customer service. However, there are two major obstacles for international companies to automatically detect the meaning of customer feedback in a global multilingual environment. Firstly, there is no widely acknowledged categorisation (classes) of meaning for customer feedback. Secondly, the applicability of one meaning categorisation, if it exists, to customer feedback in multiple languages is questionable. In this paper, we extracted representative real world samples of customer feedback from Microsoft Office customers in multiple languages, English, Spanish and Japanese,and concluded a five-class categorisation(comment, request, bug, complaint and meaningless) for meaning classification that could be used across languages in the realm of customer feedback analysis.



rate research

Read More

173 - Yang Liu , Yifei Sun , Vincent Gao 2021
E-commerce stores collect customer feedback to let sellers learn about customer concerns and enhance customer order experience. Because customer feedback often contains redundant information, a concise summary of the feedback can be generated to help sellers better understand the issues causing customer dissatisfaction. Previous state-of-the-art abstractive text summarization models make two major types of factual errors when producing summaries from customer feedback, which are wrong entity detection (WED) and incorrect product-defect description (IPD). In this work, we introduce a set of methods to enhance the factual consistency of abstractive summarization on customer feedback. We augment the training data with artificially corrupted summaries, and use them as counterparts of the target summaries. We add a contrastive loss term into the training objective so that the model learns to avoid certain factual errors. Evaluation results show that a large portion of WED and IPD errors are alleviated for BART and T5. Furthermore, our approaches do not depend on the structure of the summarization model and thus are generalizable to any abstractive summarization systems.
In this paper, we introduce ``Embedding Barrier, a phenomenon that limits the monolingual performance of multilingual models on low-resource languages having unique typologies. We build `BanglaBERT, a Bangla language model pretrained on 18.6 GB Internet-crawled data and benchmark on five standard NLU tasks. We discover a significant drop in the performance of the state-of-the-art multilingual model (XLM-R) from BanglaBERT and attribute this to the Embedding Barrier through comprehensive experiments. We identify that a multilingual models performance on a low-resource language is hurt when its writing script is not similar to any of the high-resource languages. To tackle the barrier, we propose a straightforward solution by transcribing languages to a common script, which can effectively improve the performance of a multilingual model for the Bangla language. As a bi-product of the standard NLU benchmarks, we introduce a new downstream dataset on natural language inference (NLI) and show that BanglaBERT outperforms previous state-of-the-art results on all tasks by up to 3.5%. We are making the BanglaBERT language model and the new Bangla NLI dataset publicly available in the hope of advancing the community. The resources can be found at url{https://github.com/csebuetnlp/banglabert}.
102 - Yiheng Xu , Tengchao Lv , Lei Cui 2021
Multimodal pre-training with text, layout, and image has achieved SOTA performance for visually-rich document understanding tasks recently, which demonstrates the great potential for joint learning across different modalities. In this paper, we present LayoutXLM, a multimodal pre-trained model for multilingual document understanding, which aims to bridge the language barriers for visually-rich document understanding. To accurately evaluate LayoutXLM, we also introduce a multilingual form understanding benchmark dataset named XFUND, which includes form understanding samples in 7 languages (Chinese, Japanese, Spanish, French, Italian, German, Portuguese), and key-value pairs are manually labeled for each language. Experiment results show that the LayoutXLM model has significantly outperformed the existing SOTA cross-lingual pre-trained models on the XFUND dataset. The pre-trained LayoutXLM model and the XFUND dataset are publicly available at https://aka.ms/layoutxlm.
Multilingual pretrained language models have demonstrated remarkable zero-shot cross-lingual transfer capabilities. Such transfer emerges by fine-tuning on a task of interest in one language and evaluating on a distinct language, not seen during the fine-tuning. Despite promising results, we still lack a proper understanding of the source of this transfer. Using a novel layer ablation technique and analyses of the models internal representations, we show that multilingual BERT, a popular multilingual language model, can be viewed as the stacking of two sub-networks: a multilingual encoder followed by a task-specific language-agnostic predictor. While the encoder is crucial for cross-lingual transfer and remains mostly unchanged during fine-tuning, the task predictor has little importance on the transfer and can be reinitialized during fine-tuning. We present extensive experiments with three distinct tasks, seventeen typologically diverse languages and multiple domains to support our hypothesis.
This paper concerns the intersection of natural language and the physical space around us in which we live, that we observe and/or imagine things within. Many important features of language have spatial connotations, for example, many prepositions (like in, next to, after, on, etc.) are fundamentally spatial. Space is also a key factor of the meanings of many words/phrases/sentences/text, and space is a, if not the key, context for referencing (e.g. pointing) and embodiment. We propose a mechanism for how space and linguistic structure can be made to interact in a matching compositional fashion. Examples include Cartesian space, subway stations, chesspieces on a chess-board, and Penroses staircase. The starting point for our construction is the DisCoCat model of compositional natural language meaning, which we relax to accommodate physical space. We address the issue of having multiple agents/objects in a space, including the case that each agent has different capabilities with respect to that space, e.g., the specific moves each chesspiece can make, or the different velocities one may be able to reach. Once our model is in place, we show how inferences drawing from the structure of physical space can be made. We also how how linguistic model of space can interact with other such models related to our senses and/or embodiment, such as the conceptual spaces of colour, taste and smell, resulting in a rich compositional model of meaning that is close to human experience and embodiment in the world.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا