Do you want to publish a course? Click here

TS-Net: Combining modality specific and common features for multimodal patch matching

199   0   0.0 ( 0 )
 Added by Frederic Jurie
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Multimodal patch matching addresses the problem of finding the correspondences between image patches from two different modalities, e.g. RGB vs sketch or RGB vs near-infrared. The comparison of patches of different modalities can be done by discovering the information common to both modalities (Siamese like approaches) or the modality-specific information (Pseudo-Siamese like approaches). We observed that none of these two scenarios is optimal. This motivates us to propose a three-stream architecture, dubbed as TS-Net, combining the benefits of the two. In addition, we show that adding extra constraints in the intermediate layers of such networks further boosts the performance. Experimentations on three multimodal datasets show significant performance gains in comparison with Siamese and Pseudo-Siamese networks.

rate research

Read More

Accurately describing and detecting 2D and 3D keypoints is crucial to establishing correspondences across images and point clouds. Despite a plethora of learning-based 2D or 3D local feature descriptors and detectors having been proposed, the derivation of a shared descriptor and joint keypoint detector that directly matches pixels and points remains under-explored by the community. This work takes the initiative to establish fine-grained correspondences between 2D images and 3D point clouds. In order to directly match pixels and points, a dual fully convolutional framework is presented that maps 2D and 3D inputs into a shared latent representation space to simultaneously describe and detect keypoints. Furthermore, an ultra-wide reception mechanism in combination with a novel loss function are designed to mitigate the intrinsic information variations between pixel and point local regions. Extensive experimental results demonstrate that our framework shows competitive performance in fine-grained matching between images and point clouds and achieves state-of-the-art results for the task of indoor visual localization. Our source code will be available at [no-name-for-blind-review].
The non-local self-similarity property of natural images has been exploited extensively for solving various image processing problems. When it comes to video sequences, harnessing this force is even more beneficial due to the temporal redundancy. In the context of image and video denoising, many classically-oriented algorithms employ self-similarity, splitting the data into overlapping patches, gathering groups of similar ones and processing these together somehow. With the emergence of convolutional neural networks (CNN), the patch-based framework has been abandoned. Most CNN denoisers operate on the whole image, leveraging non-local relations only implicitly by using a large receptive field. This work proposes a novel approach for leveraging self-similarity in the context of video denoising, while still relying on a regular convolutional architecture. We introduce a concept of patch-craft frames - artificial frames that are similar to the real ones, built by tiling matched patches. Our algorithm augments video sequences with patch-craft frames and feeds them to a CNN. We demonstrate the substantial boost in denoising performance obtained with the proposed approach.
With the advent of advancements in deep learning approaches, such as deep convolution neural network, residual neural network, adversarial network; U-Net architectures are most widely utilized in biomedical image segmentation to address the automation in identification and detection of the target regions or sub-regions. In recent studies, U-Net based approaches have illustrated state-of-the-art performance in different applications for the development of computer-aided diagnosis systems for early diagnosis and treatment of diseases such as brain tumor, lung cancer, alzheimer, breast cancer, etc. This article contributes to present the success of these approaches by describing the U-Net framework, followed by the comprehensive analysis of the U-Net variants for different medical imaging or modalities such as magnetic resonance imaging, X-ray, computerized tomography/computerized axial tomography, ultrasound, positron emission tomography, etc. Besides, this article also highlights the contribution of U-Net based frameworks in the on-going pandemic, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) also known as COVID-19.
We propose a new dataset for learning local image descriptors which can be used for significantly improved patch matching. Our proposed dataset consists of an order of magnitude more number of scenes, images, and positive and negative correspondences compared to the currently available Multi-View Stereo (MVS) dataset from Brown et al. The new dataset also has better coverage of the overall viewpoint, scale, and lighting changes in comparison to the MVS dataset. Our dataset also provides supplementary information like RGB patches with scale and rotations values, and intrinsic and extrinsic camera parameters which as shown later can be used to customize training data as per application. We train an existing state-of-the-art model on our dataset and evaluate on publicly available benchmarks such as HPatches dataset and Strecha et al.cite{strecha} to quantify the image descriptor performance. Experimental evaluations show that the descriptors trained using our proposed dataset outperform the current state-of-the-art descriptors trained on MVS by 8%, 4% and 10% on matching, verification and retrieval tasks respectively on the HPatches dataset. Similarly on the Strecha dataset, we see an improvement of 3-5% for the matching task in non-planar scenes.
286 - Mengmeng Ma , Jian Ren , Long Zhao 2021
A common assumption in multimodal learning is the completeness of training data, i.e., full modalities are available in all training examples. Although there exists research endeavor in developing novel methods to tackle the incompleteness of testing data, e.g., modalities are partially missing in testing examples, few of them can handle incomplete training modalities. The problem becomes even more challenging if considering the case of severely missing, e.g., 90% training examples may have incomplete modalities. For the first time in the literature, this paper formally studies multimodal learning with missing modality in terms of flexibility (missing modalities in training, testing, or both) and efficiency (most training data have incomplete modality). Technically, we propose a new method named SMIL that leverages Bayesian meta-learning in uniformly achieving both objectives. To validate our idea, we conduct a series of experiments on three popular benchmarks: MM-IMDb, CMU-MOSI, and avMNIST. The results prove the state-of-the-art performance of SMIL over existing methods and generative baselines including autoencoders and generative adversarial networks. Our code is available at https://github.com/mengmenm/SMIL.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا