No Arabic abstract
The non-local self-similarity property of natural images has been exploited extensively for solving various image processing problems. When it comes to video sequences, harnessing this force is even more beneficial due to the temporal redundancy. In the context of image and video denoising, many classically-oriented algorithms employ self-similarity, splitting the data into overlapping patches, gathering groups of similar ones and processing these together somehow. With the emergence of convolutional neural networks (CNN), the patch-based framework has been abandoned. Most CNN denoisers operate on the whole image, leveraging non-local relations only implicitly by using a large receptive field. This work proposes a novel approach for leveraging self-similarity in the context of video denoising, while still relying on a regular convolutional architecture. We introduce a concept of patch-craft frames - artificial frames that are similar to the real ones, built by tiling matched patches. Our algorithm augments video sequences with patch-craft frames and feeds them to a CNN. We demonstrate the substantial boost in denoising performance obtained with the proposed approach.
Non-local self-similarity based low rank algorithms are the state-of-the-art methods for image denoising. In this paper, a new method is proposed by solving two issues: how to improve similar patches matching accuracy and build an appropriate low rank matrix approximation model for Gaussian noise. For the first issue, similar patches can be found locally or globally. Local patch matching is to find similar patches in a large neighborhood which can alleviate noise effect, but the number of patches may be insufficient. Global patch matching is to determine enough similar patches but the error rate of patch matching may be higher. Based on this, we first use local patch matching method to reduce noise and then use Gaussian patch mixture model to achieve global patch matching. The second issue is that there is no low rank matrix approximation model to adapt to Gaussian noise. We build a new model according to the characteristics of Gaussian noise, then prove that there is a globally optimal solution of the model. By solving the two issues, experimental results are reported to show that the proposed approach outperforms the state-of-the-art denoising methods includes several deep learning ones in both PSNR / SSIM values and visual quality.
We propose a new dataset for learning local image descriptors which can be used for significantly improved patch matching. Our proposed dataset consists of an order of magnitude more number of scenes, images, and positive and negative correspondences compared to the currently available Multi-View Stereo (MVS) dataset from Brown et al. The new dataset also has better coverage of the overall viewpoint, scale, and lighting changes in comparison to the MVS dataset. Our dataset also provides supplementary information like RGB patches with scale and rotations values, and intrinsic and extrinsic camera parameters which as shown later can be used to customize training data as per application. We train an existing state-of-the-art model on our dataset and evaluate on publicly available benchmarks such as HPatches dataset and Strecha et al.cite{strecha} to quantify the image descriptor performance. Experimental evaluations show that the descriptors trained using our proposed dataset outperform the current state-of-the-art descriptors trained on MVS by 8%, 4% and 10% on matching, verification and retrieval tasks respectively on the HPatches dataset. Similarly on the Strecha dataset, we see an improvement of 3-5% for the matching task in non-planar scenes.
This work addresses the problem of learning compact yet discriminative patch descriptors within a deep learning framework. We observe that features extracted by convolutional layers in the pixel domain are largely complementary to features extracted in a transformed domain. We propose a convolutional network framework for learning binary patch descriptors where pixel domain features are fused with features extracted from the transformed domain. In our framework, while convolutional and transformed features are distinctly extracted, they are fused and provided to a single classifier which thus jointly operates on convolutional and transformed features. We experiment at matching patches from three different datasets, showing that our feature fusion approach outperforms multiple state-of-the-art approaches in terms of accuracy, rate, and complexity.
Patch-based methods and deep networks have been employed to tackle image inpainting problem, with their own strengths and weaknesses. Patch-based methods are capable of restoring a missing region with high-quality texture through searching nearest neighbor patches from the unmasked regions. However, these methods bring problematic contents when recovering large missing regions. Deep networks, on the other hand, show promising results in completing large regions. Nonetheless, the results often lack faithful and sharp details that resemble the surrounding area. By bringing together the best of both paradigms, we propose a new deep inpainting framework where texture generation is guided by a texture memory of patch samples extracted from unmasked regions. The framework has a novel design that allows texture memory retrieval to be trained end-to-end with the deep inpainting network. In addition, we introduce a patch distribution loss to encourage high-quality patch synthesis. The proposed method shows superior performance both qualitatively and quantitatively on three challenging image benchmarks, i.e., Places, CelebA-HQ, and Paris Street-View datasets.
By adding human-imperceptible noise to clean images, the resultant adversarial examples can fool other unknown models. Features of a pixel extracted by deep neural networks (DNNs) are influenced by its surrounding regions, and different DNNs generally focus on different discriminative regions in recognition. Motivated by this, we propose a patch-wise iterative algorithm -- a black-box attack towards mainstream normally trained and defense models, which differs from the existing attack methods manipulating pixel-wise noise. In this way, without sacrificing the performance of white-box attack, our adversarial examples can have strong transferability. Specifically, we introduce an amplification factor to the step size in each iteration, and one pixels overall gradient overflowing the $epsilon$-constraint is properly assigned to its surrounding regions by a project kernel. Our method can be generally integrated to any gradient-based attack methods. Compared with the current state-of-the-art attacks, we significantly improve the success rate by 9.2% for defense models and 3.7% for normally trained models on average. Our code is available at url{https://github.com/qilong-zhang/Patch-wise-iterative-attack}