Do you want to publish a course? Click here

Field evolution of magnons in $alpha$-RuCl$_3$ by high-resolution polarized terahertz spectroscopy

191   0   0.0 ( 0 )
 Added by Arielle Little
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Kitaev quantum spin liquid (KSL) is a theoretically predicted state of matter whose fractionalized quasiparticles are distinct from bosonic magnons, the fundamental excitation in ordered magnets. The layered honeycomb antiferromagnet $alpha$-RuCl$_3$ is a KSL candidate material, as it can be driven to a magnetically disordered phase by application of an in-plane magnetic field, with $H_c sim 7$ T. Here we report a detailed characterization of the magnetic excitation spectrum of this material by high-resolution time-domain terahertz (THz) spectroscopy. We observe two sharp magnon resonances whose frequencies and amplitudes exhibit a discontinuity as a function of applied magnetic field, as well as two broader peaks at higher energy. Below the Neel temperature, we find that linear spin wave theory can account for all of these essential features of the spectra when a $C_3$-breaking distortion of the honeycomb lattice and the presence of structural domains are taken into account.



rate research

Read More

We report measurements of optical absorption in the zig-zag antiferromagnet $alpha$-RuCl$_3$ as a function of temperature, $T$, magnetic field, $B$, and photon energy, $hbaromega$ in the range $sim$ 0.3 to 8.3 meV, using time-domain terahertz spectroscopy. Polarized measurements show that 3-fold rotational symmetry is broken in the honeycomb plane from 2 K to 300 K. We find a sharp absorption peak at 2.56 meV upon cooling below the Neel temperature of 7 K at $B=0$ that we identify as magnetic-dipole excitation of a zero-wavevector magnon, or antiferromagnetic resonance (AFMR). With application of $B$, the AFMR broadens and shifts to lower frequency as long-range magnetic order is lost in a manner consistent with transitioning to a spin-disordered phase. From direct, internally calibrated measurement of the AFMR spectral weight, we place an upper bound on the contribution to the $dc$ susceptibility from a magnetic excitation continuum.
We present comprehensive electron spin resonance (ESR) studies of in-plane oriented single crystals of $alpha$-RuCl$_3$, a quasi-two-dimensional material with honeycomb structure, focusing on its high-field spin dynamics. The measurements were performed in magnetic fields up to 16 T, applied along the [110] and [100] directions. Several ESR modes were detected. Combining our findings with recent inelastic neutron- and Raman-scattering data, we identify most of the observed excitations. Most importantly, we show that the low-temperature ESR response beyond the boundary of the magnetically ordered region is dominated by single- and two-particle processes with magnons as elementary excitations. The peculiarities of the excitation spectrum in the vicinity of the critical field are discussed.
The frustrated magnet $alpha$-RuCl$_3$ constitutes a fascinating quantum material platform that harbors the intriguing Kitaev physics. However, a consensus on its intricate spin interactions and field-induced quantum phases has not been reached yet. Here we exploit multiple state-of-the-art many-body methods and determine the microscopic spin model that quantitatively explains major observations in $alpha$-RuCl$_3$, including the zigzag order, double-peak specific heat, magnetic anisotropy, and the characteristic M-star dynamical spin structure, etc. According to our model simulations, the in-plane field drives the system into the polarized phase at about 7 T and a thermal fractionalization occurs at finite temperature, reconciling observations in different experiments. Under out-of-plane fields, the zigzag order is suppressed at 35 T, above which, and below a polarization field of 100 T level, there emerges a field-induced quantum spin liquid. The fractional entropy and algebraic low-temperature specific heat unveil the nature of a gapless spin liquid, which can be explored in high-field measurements on $alpha$-RuCl$_3$.
$alpha$-RuCl$_3$ has attracted enormous attention since it has been proposed as a prime candidate to study fractionalized magnetic excitations akin to Kitaevs honeycomb-lattice spin liquid. We have performed a detailed specific-heat investigation at temperatures down to $0.4$ K in applied magnetic fields up to $9$ T for fields parallel to the $ab$ plane. We find a suppression of the zero-field antiferromagnetic order, together with an increase of the low-temperature specific heat, with increasing field up to $mu_0H_capprox 6.9$ T. Above $H_c$, the magnetic contribution to the low-temperature specific heat is strongly suppressed, implying the opening of a spin-excitation gap. Our data point toward a field-induced quantum critical point (QCP) at $H_c$; this is supported by universal scaling behavior near $H_c$. Remarkably, the data also reveal the existence of a small characteristic energy scale well below $1$~meV above which the excitation spectrum changes qualitatively. We relate the data to theoretical calculations based on a $J_1$--$K_1$--$Gamma_1$--$J_3$ honeycomb model.
We present high-field electron spin resonance (ESR) studies of the honeycomb-lattice material $alpha$-RuCl$_3$, a prime candidate to exhibit Kitaev physics. Two modes of antiferromagnetic resonance were detected in the zigzag ordered phase, with magnetic field applied in the $ab$ plane. A very rich excitation spectrum was observed in the field-induced quantum paramagnetic phase. The obtained data are compared with results of recent numerical calculations, strongly suggesting a very unconventional multiparticle character of the spin dynamics in $alpha$-RuCl$_3$. The frequency-field diagram of the lowest-energy ESR mode is found consistent with the behavior of the field-induced energy gap, revealed by thermodynamic measurements.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا