No Arabic abstract
Parsimonious representations are ubiquitous in modeling and processing information. Motivated by the recent Multi-Layer Convolutional Sparse Coding (ML-CSC) model, we herein generalize the traditional Basis Pursuit problem to a multi-layer setting, introducing similar sparse enforcing penalties at different representation layers in a symbiotic relation between synthesis and analysis sparse priors. We explore different iterative methods to solve this new problem in practice, and we propose a new Multi-Layer Iterative Soft Thresholding Algorithm (ML-ISTA), as well as a fast version (ML-FISTA). We show that these nested first order algorithms converge, in the sense that the function value of near-fixed points can get arbitrarily close to the solution of the original problem. We further show how these algorithms effectively implement particular recurrent convolutional neural networks (CNNs) that generalize feed-forward ones without introducing any parameters. We present and analyze different architectures resulting unfolding the iterations of the proposed pursuit algorithms, including a new Learned ML-ISTA, providing a principled way to construct deep recurrent CNNs. Unlike other similar constructions, these architectures unfold a global pursuit holistically for the entire network. We demonstrate the emerging constructions in a supervised learning setting, consistently improving the performance of classical CNNs while maintaining the number of parameters constant.
With the general trend of increasing Convolutional Neural Network (CNN) model sizes, model compression and acceleration techniques have become critical for the deployment of these models on edge devices. In this paper, we provide a comprehensive survey on Pruning, a major compression strategy that removes non-critical or redundant neurons from a CNN model. The survey covers the overarching motivation for pruning, different strategies and criteria, their advantages and drawbacks, along with a compilation of major pruning techniques. We conclude the survey with a discussion on alternatives to pruning and current challenges for the model compression community.
We show generalisation error bounds for deep learning with two main improvements over the state of the art. (1) Our bounds have no explicit dependence on the number of classes except for logarithmic factors. This holds even when formulating the bounds in terms of the $L^2$-norm of the weight matrices, where previous bounds exhibit at least a square-root dependence on the number of classes. (2) We adapt the classic Rademacher analysis of DNNs to incorporate weight sharing -- a task of fundamental theoretical importance which was previously attempted only under very restrictive assumptions. In our results, each convolutional filter contributes only once to the bound, regardless of how many times it is applied. Further improvements exploiting pooling and sparse connections are provided. The presented bounds scale as the norms of the parameter matrices, rather than the number of parameters. In particular, contrary to bounds based on parameter counting, they are asymptotically tight (up to log factors) when the weights approach initialisation, making them suitable as a basic ingredient in bounds sensitive to the optimisation procedure. We also show how to adapt the recent technique of loss function augmentation to our situation to replace spectral norms by empirical analogues whilst maintaining the advantages of our approach.
The recently proposed Multi-Layer Convolutional Sparse Coding (ML-CSC) model, consisting of a cascade of convolutional sparse layers, provides a new interpretation of Convolutional Neural Networks (CNNs). Under this framework, the computation of the forward pass in a CNN is equivalent to a pursuit algorithm aiming to estimate the nested sparse representation vectors -- or feature maps -- from a given input signal. Despite having served as a pivotal connection between CNNs and sparse modeling, a deeper understanding of the ML-CSC is still lacking: there are no pursuit algorithms that can serve this model exactly, nor are there conditions to guarantee a non-empty model. While one can easily obtain signals that approximately satisfy the ML-CSC constraints, it remains unclear how to simply sample from the model and, more importantly, how one can train the convolutional filters from real data. In this work, we propose a sound pursuit algorithm for the ML-CSC model by adopting a projection approach. We provide new and improved bounds on the stability of the solution of such pursuit and we analyze different practical alternatives to implement this in practice. We show that the training of the filters is essential to allow for non-trivial signals in the model, and we derive an online algorithm to learn the dictionaries from real data, effectively resulting in cascaded sparse convolutional layers. Last, but not least, we demonstrate the applicability of the ML-CSC model for several applications in an unsupervised setting, providing competitive results. Our work represents a bridge between matrix factorization, sparse dictionary learning and sparse auto-encoders, and we analyze these connections in detail.
Graph convolutional neural networks (GCNs) embed nodes in a graph into Euclidean space, which has been shown to incur a large distortion when embedding real-world graphs with scale-free or hierarchical structure. Hyperbolic geometry offers an exciting alternative, as it enables embeddings with much smaller distortion. However, extending GCNs to hyperbolic geometry presents several unique challenges because it is not clear how to define neural network operations, such as feature transformation and aggregation, in hyperbolic space. Furthermore, since input features are often Euclidean, it is unclear how to transform the features into hyperbolic embeddings with the right amount of curvature. Here we propose Hyperbolic Graph Convolutional Neural Network (HGCN), the first inductive hyperbolic GCN that leverages both the expressiveness of GCNs and hyperbolic geometry to learn inductive node representations for hierarchical and scale-free graphs. We derive GCN operations in the hyperboloid model of hyperbolic space and map Euclidean input features to embeddings in hyperbolic spaces with different trainable curvature at each layer. Experiments demonstrate that HGCN learns embeddings that preserve hierarchical structure, and leads to improved performance when compared to Euclidean analogs, even with very low dimensional embeddings: compared to state-of-the-art GCNs, HGCN achieves an error reduction of up to 63.1% in ROC AUC for link prediction and of up to 47.5% in F1 score for node classification, also improving state-of-the art on the Pubmed dataset.
Recent methods for learning a linear subspace from data corrupted by outliers are based on convex $ell_1$ and nuclear norm optimization and require the dimension of the subspace and the number of outliers to be sufficiently small. In sharp contrast, the recently proposed Dual Principal Component Pursuit (DPCP) method can provably handle subspaces of high dimension by solving a non-convex $ell_1$ optimization problem on the sphere. However, its geometric analysis is based on quantities that are difficult to interpret and are not amenable to statistical analysis. In this paper we provide a refined geometric analysis and a new statistical analysis that show that DPCP can tolerate as many outliers as the square of the number of inliers, thus improving upon other provably correct robust PCA methods. We also propose a scalable Projected Sub-Gradient Method method (DPCP-PSGM) for solving the DPCP problem and show it admits linear convergence even though the underlying optimization problem is non-convex and non-smooth. Experiments on road plane detection from 3D point cloud data demonstrate that DPCP-PSGM can be more efficient than the traditional RANSAC algorithm, which is one of the most popular methods for such computer vision applications.