Do you want to publish a course? Click here

Bayesian Higher Order Hidden Markov Models

152   0   0.0 ( 0 )
 Added by Abhra Sarkar
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

We consider the problem of flexible modeling of higher order hidden Markov models when the number of latent states and the nature of the serial dependence, including the true order, are unknown. We propose Bayesian nonparametric methodology based on tensor factorization techniques that can characterize any transition probability with a specified maximal order, allowing automated selection of the important lags and capturing higher order interactions among the lags. Theoretical results provide insights into identifiability of the emission distributions and asymptotic behavior of the posterior. We design efficient Markov chain Monte Carlo algorithms for posterior computation. In simulation experiments, the method vastly outperformed its first and higher order competitors not just in higher order settings, but, remarkably, also in first order cases. Practical utility is illustrated using real world applications.



rate research

Read More

We develop clustering procedures for longitudinal trajectories based on a continuous-time hidden Markov model (CTHMM) and a generalized linear observation model. Specifically in this paper, we carry out finite and infinite mixture model-based clustering for a CTHMM and achieve inference using Markov chain Monte Carlo (MCMC). For a finite mixture model with prior on the number of components, we implement reversible-jump MCMC to facilitate the trans-dimensional move between different number of clusters. For a Dirichlet process mixture model, we utilize restricted Gibbs sampling split-merge proposals to expedite the MCMC algorithm. We employ proposed algorithms to the simulated data as well as a real data example, and the results demonstrate the desired performance of the new sampler.
We consider the problem of flexible modeling of higher order Markov chains when an upper bound on the order of the chain is known but the true order and nature of the serial dependence are unknown. We propose Bayesian nonparametric methodology based on conditional tensor factorizations, which can characterize any transition probability with a specified maximal order. The methodology selects the important lags and captures higher order interactions among the lags, while also facilitating calculation of Bayes factors for a variety of hypotheses of interest. We design efficient Markov chain Monte Carlo algorithms for posterior computation, allowing for uncertainty in the set of important lags to be included and in the nature and order of the serial dependence. The methods are illustrated using simulation experiments and real world applications.
We consider the modeling of data generated by a latent continuous-time Markov jump process with a state space of finite but unknown dimensions. Typically in such models, the number of states has to be pre-specified, and Bayesian inference for a fixed number of states has not been studied until recently. In addition, although approaches to address the problem for discrete-time models have been developed, no method has been successfully implemented for the continuous-time case. We focus on reversible jump Markov chain Monte Carlo which allows the trans-dimensional move among different numbers of states in order to perform Bayesian inference for the unknown number of states. Specifically, we propose an efficient split-combine move which can facilitate the exploration of the parameter space, and demonstrate that it can be implemented effectively at scale. Subsequently, we extend this algorithm to the context of model-based clustering, allowing numbers of states and clusters both determined during the analysis. The model formulation, inference methodology, and associated algorithm are illustrated by simulation studies. Finally, We apply this method to real data from a Canadian healthcare system in Quebec.
138 - Jungyeul Park 2015
Hidden Markov Models (HMMs) are learning methods for pattern recognition. The probabilistic HMMs have been one of the most used techniques based on the Bayesian model. First-order probabilistic HMMs were adapted to the theory of belief functions such that Bayesian probabilities were replaced with mass functions. In this paper, we present a second-order Hidden Markov Model using belief functions. Previous works in belief HMMs have been focused on the first-order HMMs. We extend them to the second-order model.
The identification of factors associated with mental and behavioral disorders in early childhood is critical both for psychopathology research and the support of primary health care practices. Motivated by the Millennium Cohort Study, in this paper we study the effect of a comprehensive set of covariates on childrens emotional and behavioural trajectories in England. To this end, we develop a Quantile Mixed Hidden Markov Model for joint estimation of multiple quantiles in a linear regression setting for multivariate longitudinal data. The novelty of the proposed approach is based on the Multivariate Asymmetric Laplace distribution which allows to jointly estimate the quantiles of the univariate conditional distributions of a multivariate response, accounting for possible correlation between the outcomes. Sources of unobserved heterogeneity and serial dependency due to repeated measures are modeled through the introduction of individual-specific, time-constant random coefficients and time-varying parameters evolving over time with a Markovian structure, respectively. The inferential approach is carried out through the construction of a suitable Expectation-Maximization algorithm without parametric assumptions on the random effects distribution.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا