No Arabic abstract
We study various properties of the vibrational normal modes for Coulomb-interacting particles in two-dimensional irregular confinement using numerical simulations. By analyzing the participation ratio and spectral statistics, we characterize the vibrational modes for Coulomb clusters as localized, quasi-localized and delocalized. We also study a novel correlation function to understand the spatial structure of these different kinds of modes and subsequently extract the associated characteristic length scales. We further demonstrate that, at any given temperature, particles exhibiting larger displacement over a time interval comparable to the structural relaxation time, are strongly correlated with the low-frequency quasi-localized modes of the inherent structure corresponding to the initial configuration. Establishing this correlation for Coulomb clusters paves the path to identify the particular feature of the initial configuration that determines the previously observed heterogeneous dynamics of the particles at low temperatures in these systems.
We study the temperature dependence of static and dynamic responses of Coulomb interacting particles in two-dimensional traps across the thermal crossover from an amorphous solid- to liquid-like behaviors. While static correlations, that investigate the translational and bond orientational order in the confinements, show the footprints of hexatic-like phase at low temperature, dynamics of the particles slow down considerably in this state -- reminiscent of a supercooled liquid. Using density correlations, we probe intriguing signatures of long-lived inhomogeneities due to the interplay of the irregularity in the confinement and long-range Coulomb interactions. The relaxation at multiple time scales show stretched-exponential decay of spatial correlations in irregular traps. Temperature dependence of characteristic time scales, depicting the structural relaxation of the system, show striking similarities with those observed for the glassy systems indicating that, some of the key signatures of supercooled liquids emerge in confinements with lower spatial symmetries.
We study a recently introduced and exactly solvable mean-field model for the density of vibrational states $mathcal{D}(omega)$ of a structurally disordered system. The model is formulated as a collection of disordered anharmonic oscillators, with random stiffness $kappa$ drawn from a distribution $p(kappa)$, subjected to a constant field $h$ and interacting bilinearly with a coupling of strength $J$. We investigate the vibrational properties of its ground state at zero temperature. When $p(kappa)$ is gapped, the emergent $mathcal{D}(omega)$ is also gapped, for small $J$. Upon increasing $J$, the gap vanishes on a critical line in the $(h,J)$ phase diagram, whereupon replica symmetry is broken. At small $h$, the form of this pseudogap is quadratic, $mathcal{D}(omega)simomega^2$, and its modes are delocalized, as expected from previously investigated mean-field spin glass models. However, we determine that for large enough $h$, a quartic pseudogap $mathcal{D}(omega)simomega^4$, populated by localized modes, emerges, the two regimes being separated by a special point on the critical line. We thus uncover that mean-field disordered systems can generically display both a quadratic-delocalized and a quartic-localized spectrum at the glass transition.
Using molecular dynamics simulations we investigate the dependence of the structural and vibrational properties of the surfaces of sodo-silicate glasses on the sodium content as well as the nature of the surface. Two types of glass surfaces are considered: A melt-formed surface (MS) in which a liquid with a free surface has been cooled down into the glass phase and a fracture surface (FS) obtained by tensile loading of a glass sample. We find that the MS is more abundant in Na and non-bridging oxygen atoms than the FS and the bulk glass, whereas the FS has higher concentration of structural defects such as two-membered rings and under-coordinated Si than the MS. We associate these structural differences to the production histories of the glasses and the mobility of the Na ions. It is also found that for Na-poor systems the fluctuations in composition and local atomic charge density decay with a power-law as a function of distance from the surface while Na-rich systems show an exponential decay with a typical decay length of $approx2.3$~AA. The vibrational density of states shows that the presence of the surfaces leads to a decrease of the characteristic frequencies in the system. The two-membered rings give rise to a pronounce band at $approx880$~cm$^{-1}$ which is in good agreement experimental observations.
We propose a new approach to probing ergodicity and its breakdown in quantum many-body systems based on their response to a local perturbation. We study the distribution of matrix elements of a local operator between the systems eigenstates, finding a qualitatively different behaviour in the many-body localized (MBL) and ergodic phases. To characterize how strongly a local perturbation modifies the eigenstates, we introduce the parameter ${cal G}(L)=langle ln (V_{nm}/delta) rangle$, which represents a disorder-averaged ratio of a typical matrix element of a local operator $V$ to the energy level spacing, $delta$; this parameter is reminiscent of the Thouless conductance in the single-particle localization. We show that the parameter ${cal G}(L)$ decreases with system size $L$ in the MBL phase, and grows in the ergodic phase. We surmise that the delocalization transition occurs when ${cal G}(L)$ is independent of system size, ${cal G}(L)={cal G}_csim 1$. We illustrate our approach by studying the many-body localization transition and resolving the many-body mobility edge in a disordered 1D XXZ spin-1/2 chain using exact diagonalization and time-evolving block decimation methods. Our criterion for the MBL transition gives insights into microscopic details of transition. Its direct physical consequences, in particular logarithmically slow transport at the transition, and extensive entanglement entropy of the eigenstates, are consistent with recent renormalization group predictions.
Granular crystallisation is an important phenomenon whereby ordered packing structures form in granular matter under vibration. However, compared with the well-developed principles of crystallisation at the atomic scale, crystallisation in granular matter remains relatively poorly understood. To investigate this behaviour further and bridge the fields of granular matter and materials science, we simulated mono-disperse spheres confined in cylindrical containers to study their structural dynamics during vibration. By applying adequate vibration, disorder-to-order transitions were induced. Such transitions were characterised at the particle scale through bond orientation order parameters. As a result, emergent crystallisation was indicated by the enhancement of the local order of individual particles and the number of ordered particles. The observed heterogeneous crystallisation was characterised by the evolution of the spatial distributions via coarse-graining the order index. Crystalline regimes epitaxially grew from templates formed near the container walls during vibration, here termed the wall effect. By varying the geometrical dimensions of cylindrical containers, the obtained crystallised structures were found to differ at the cylindrical wall zone and the planar bottom wall zone. The formed packing structures were quantitatively compared to X-ray tomography results using again these order parameters. The findings here provide a microscopic perspective for developing laws governing structural dynamics in granular matter.