No Arabic abstract
The membrane paradigm posits that black hole microstates are dynamical degrees of freedom associated with a physical membrane vanishingly close to the black holes event horizon. The soft hair paradigm postulates that black holes can be equipped with zero-energy charges associated with residual diffeomorphisms that label near horizon degrees of freedom. In this essay we argue that the latter paradigm implies the former. More specifically, we exploit suitable near horizon boundary conditions that lead to an algebra of `soft hair charges containing infinite copies of the Heisenberg algebra, associated with area-preserving shear deformations of black hole horizons. We employ the near horizon soft hair and its Heisenberg algebra to provide a formulation of the membrane paradigm and show how it accounts for black hole entropy.
We consider large gauge transformations of gravity and electromagnetism in D=4 asymptotically flat spacetime. Already at the classical level, we identify a canonical transformation that decouples the soft variables from the hard dynamics. We find that only the soft dynamics is constrained by BMS or large U(1) charge conservation. Physically this corresponds to the fact that sufficiently long-wavelength photons or gravitons that are added to the in-state will simply pass through the interaction region; they scatter trivially in their own sector. This implies in particular that the large gauge symmetries bear no relevance to the black hole information paradox. We also present the quantum version of soft decoupling. As a consistency check, we show that the apparent mixing of soft and hard modes in the original variables arises entirely from the long range field of the hard charges, which is fixed by gauge invariance and so contains no additional information.
We study $SO(d+1)$ invariant solutions of the classical vacuum Einstein equations in $p+d+3$ dimensions. In the limit $d to infty$ with $p$ held fixed we construct a class of solutions labelled by the shape of a membrane (the event horizon), together with a `velocity field that lives on this membrane. We demonstrate that our metrics can be corrected to nonsingular solutions at first sub-leading order in $frac{1}{d}$ if and only if the membrane shape and `velocity field obey equations of motion which we determine. These equations define a well posed initial value problem for the membrane shape and this `velocity and so completely determinethe dynamics of the black hole. They may be viewed as governing the non-linear dynamics of the light quasi normal modes of Emparan, Suzuki and Tanabe.
We find the equations of motion of membranes dual to the black holes in Einstein-Gauss-Bonnet (EGB) gravity to leading order in 1/D in the large D regime. We also find the metric solutions to the EGB equations to first subleading order in 1/D in terms of membrane variables. We propose a world volume stress tensor for the membrane whose conservation equations are equivalent to the leading order membrane equations. We also work out the light quasi-normal mode spectrum of static black holes in EGB gravity from the linearised fluctuations of static, round membranes. Also, the effective equations for stationary black holes and the spectrum of linearised spectrum about black string configurations has been obtained using the membrane equation for EGB gravity.All our results are worked out to linear order in the Gauss-Bonnet parameter.
We study gravitational perturbations around the near horizon geometry of the (near) extreme Kerr black hole. By considering a consistent truncation for the metric fluctuations, we obtain a solution to the linearized Einstein equations. The dynamics is governed by two master fields which, in the context of the nAdS$_2$/nCFT$_1$ correspondence, are both irrelevant operators of conformal dimension $Delta=2$. These fields control the departure from extremality by breaking the conformal symmetry of the near horizon region. One of the master fields is tied to large diffeomorphisms of the near horizon, with its equations of motion compatible with a Schwarzian effective action. The other field is essential for a consistent description of the geometry away from the horizon.
In the large D limit, and under certain circumstances, it has recently been demonstrated that black hole dynamics in asymptotically flat spacetime reduces to the dynamics of a non gravitational membrane propagating in flat D dimensional spacetime. We demonstrate that this correspondence extends to all orders in a 1/D expansion and outline a systematic method for deriving the corrected membrane equation in a power series expansion in 1/D. As an illustration of our method we determine the first subleading corrections to the membrane equations of motion. A qualitatively new effect at this order is that the divergence of the membrane velocity is nonzero and proportional to the square of the shear tensor reminiscent of the entropy current of hydrodynamics. As a test, we use our modified membrane equations to compute the corrections to frequencies of light quasinormal modes about the Schwarzschild black hole and find a perfect match with earlier computations performed directly in the gravitational bulk.