Do you want to publish a course? Click here

Soft Hair as a Soft Wig

94   0   0.0 ( 0 )
 Added by Massimo Porrati
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We consider large gauge transformations of gravity and electromagnetism in D=4 asymptotically flat spacetime. Already at the classical level, we identify a canonical transformation that decouples the soft variables from the hard dynamics. We find that only the soft dynamics is constrained by BMS or large U(1) charge conservation. Physically this corresponds to the fact that sufficiently long-wavelength photons or gravitons that are added to the in-state will simply pass through the interaction region; they scatter trivially in their own sector. This implies in particular that the large gauge symmetries bear no relevance to the black hole information paradox. We also present the quantum version of soft decoupling. As a consistency check, we show that the apparent mixing of soft and hard modes in the original variables arises entirely from the long range field of the hard charges, which is fixed by gauge invariance and so contains no additional information.

rate research

Read More

The membrane paradigm posits that black hole microstates are dynamical degrees of freedom associated with a physical membrane vanishingly close to the black holes event horizon. The soft hair paradigm postulates that black holes can be equipped with zero-energy charges associated with residual diffeomorphisms that label near horizon degrees of freedom. In this essay we argue that the latter paradigm implies the former. More specifically, we exploit suitable near horizon boundary conditions that lead to an algebra of `soft hair charges containing infinite copies of the Heisenberg algebra, associated with area-preserving shear deformations of black hole horizons. We employ the near horizon soft hair and its Heisenberg algebra to provide a formulation of the membrane paradigm and show how it accounts for black hole entropy.
466 - Peng Cheng 2021
We present a paradox for evaporating black holes, which is common in most schemes trying to avoid the firewall by decoupling early and late radiation. At the late stage of the black hole evaporation, the decoupling between early and late radiation can not be realized because the black hole has a very small coarse-grained entropy, then we are faced with the firewall again. We call the problem hair-loss paradox as a pun on losing black hole soft hair during the black hole evaporation and the situation that the information paradox has put so much pressure on researchers.
We calculate log corrections to the entropy of three-dimensional black holes with soft hairy boundary conditions. Their thermodynamics possesses some special features that preclude a naive direct evaluation of these corrections, so we follow two different approaches. The first one exploits that the BTZ black hole belongs to the spectrum of Brown-Henneaux as well as soft hairy boundary conditions, so that the respective log corrections are related through a suitable change of the thermodynamic ensemble. In the second approach the analogue of modular invariance is considered for dual theories with anisotropic scaling of Lifshitz type with dynamical exponent z at the boundary. On the gravity side such scalings arise for KdV-type boundary conditions, which provide a specific 1-parameter family of multi-trace deformations of the usual AdS3/CFT2 setup, with Brown-Henneaux corresponding to z=1 and soft hairy boundary conditions to the limiting case z=0. Both approaches agree in the case of BTZ black holes for any non-negative z. Finally, for soft hairy boundary conditions we show that not only the leading term, but also the log corrections to the entropy of black flowers endowed with affine u(1) soft hair charges exclusively depend on the zero modes and hence coincide with the ones for BTZ black holes.
A recent, intriguing paper by Hawking, Perry and Strominger suggests that soft photons and gravitons can be regarded as black hole hair and may be relevant to the black hole information paradox. In this note we make use of factorization theorems for infrared divergences of the S-matrix to argue that by appropriately dressing in and out hard states, the soft-quanta-dependent part of the S-matrix becomes essentially trivial. The information paradox can be fully formulated in terms of dressed hard states, which do not depend on soft quanta.
80 - M. R. Setare , A. Jalali 2019
Recently it has been speculated that a set of infinitesimal ${rm Virasoro_{,L}}otimes{rm Virasoro_{,R}}$ diffeomorphisms exist which act non-trivially on the horizon of some black holes such as kerr and Kerr-Newman black hole cite{Haco:2018ske,Haco:2019ggi}. Using this symmetry in covariant phase space formalism one can obtains Virasoro charges as surface integrals on the horizon. Kerr-Bolt spacetime is well-known for its asymptotically topology and has been studied widely in recent years. In this work we are interested to find conserved charge associated to the Virosora symmetry of Kerr-Bolt geometry using covariant phase space formalism. We will show right and left central charge are $c_R=c_L=12 J$ respectively. Our results also show good agreement with Kerr spacetime in the limiting behavior.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا