Do you want to publish a course? Click here

Quantization of the thermal Hall conductivity at small Hall angles

89   0   0.0 ( 0 )
 Added by Mengxing Ye
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We consider the effect of coupling between phonons and a chiral Majorana edge in a gapped chiral spin liquid with Ising anyons (e.g., Kitaevs non-Abelian spin liquid on the honeycomb lattice). This is especially important in the regime in which the longitudinal bulk heat conductivity $kappa_{xx}$ due to phonons is much larger than the expected quantized thermal Hall conductance $kappa_{xy}^{rm q}=frac{pi T}{12} frac{k_B^2}{hbar}$ of the ideal isolated edge mode, so that the thermal Hall angle, i.e., the angle between the thermal current and the temperature gradient, is small. By modeling the interaction between a Majorana edge and bulk phonons, we show that the exchange of energy between the two subsystems leads to a transverse component of the bulk current and thereby an {em effective} Hall conductivity. Remarkably, the latter is equal to the quantized value when the edge and bulk can thermalize, which occurs for a Hall bar of length $L gg ell$, where $ell$ is a thermalization length. We obtain $ell sim T^{-5}$ for a model of the Majorana-phonon coupling. We also find that the quality of the quantization depends on the means of measuring the temperature and, surprisingly, a more robust quantization is obtained when the lattice, not the spin, temperature is measured. We present general hydrodynamic equations for the system, detailed results for the temperature and current profiles, and an estimate for the coupling strength and its temperature dependence based on a microscopic model Hamiltonian. Our results may explain recent experiments observing a quantized thermal Hall conductivity in the regime of small Hall angle, $kappa_{xy}/kappa_{xx} sim 10^{-3}$, in $alpha$-RuCl$_3$.



rate research

Read More

A clear thermal Hall signal ($kappa_{xy}$) was observed in the spin liquid phase of the $S=1/2$ kagome antiferromagnet Ca kapellasite (CaCu$_3$(OH)$_6$Cl$_2cdot 0.6$H$_2$O). We found that $kappa_{xy}$ is well reproduced, both qualitatively and quantitatively, using the Schwinger-boson mean-field theory with the Dzyaloshinskii--Moriya interaction of $D/J sim 0.1$. In particular, $kappa_{xy}$ values of Ca kapellasite and those of another kagome antiferromagnet, volborthite, converge to one single curve in simulations modeled using Schwinger bosons, indicating a common temperature dependence of $kappa_{xy}$ for the spins of a kagome antiferromagnet.
In a ferromagnet, the spin excitations are the well-studied magnons. In frustrated quantum magnets, long-range magnetic order fails to develop despite a large exchange coupling between the spins. In contrast to the magnons in conventional magnets, their spin excitations are poorly understood. Are they itinerant or localized? Here we show that the thermal Hall conductivity $kappa_{xy}$ provides a powerful probe of spin excitations in the quantum spin ice pyrochlore Tb$_2$Ti$_2$O$_7$. The thermal Hall response is large even though the material is transparent. The Hall response arises from spin excitations with specific characteristics that distinguish them from magnons. At low temperature ($T<$ 1 K), the thermal conductivity imitates that of a dirty metal. Using the Hall angle, we construct a phase diagram showing how the excitations are suppressed by a magnetic field.
288 - Zi-Yi Fang , Dan Ye , Yu-Yu Zhang 2021
For the fractional quantum Hall states on a finite disc, we study the thermoelectric transport properties under the influence of an edge and its reconstruction. In a recent study on a torus [Phys. Rev. B 101, 241101 (2020)], Sheng and Fu found a universal non-Fermi liquid power-law scaling of the thermoelectric conductivity $alpha_{xy} propto T^{eta}$ for the gapless composite Fermi-liquid state. The exponent $eta sim 0.5$ appears an independence of the filling factors and the details of the interactions. In the presence of an edge, we find the properties of the edge spectrum dominants the low-temperature behaviors and breaks the universal scaling law of the thermoelectric conductivity. In order to consider individually the effects of the edge states, the entanglement spectrum in real space is employed and tuned by varying the area of subsystem. In non-Abelian Moore-Read state, the Majorana neutral edge mode is found to have more significant effect than that of the charge mode in the low temperature.
It is known that the Shubnikov--de Haas oscillations can be observed in the Hall resistivity, although their amplitude is much weaker than the amplitude of the diagonal resistivity oscillations. Employing a model of two-dimensional massive Dirac fermions that exhibits anomalous Hall effect, we demonstrate that the amplitude of the Shubnikov--de Haas oscillations of the anomalous Hall conductivity is the same as that of the diagonal conductivity. We argue that the oscillations of the anomalous Hall conductivity can be observed by studying the valley Hall effect in graphene superlattices and the spin Hall effect in the low-buckled Dirac materials.
The quest for non-Abelian quasiparticles has inspired decades of experimental and theoretical efforts, where the scarcity of direct probes poses a key challenge. Among their clearest signatures is a thermal Hall conductance with quantized half-integer value in natural units $ pi^2 k_B^2 T /3 h$ ($T$ is temperature, $h$ the Planck constant, $k_B$ the Boltzmann constant). Such a value was indeed recently observed in a quantum-Hall system and a magnetic insulator. We show that a non-topological thermal metal phase that forms due to quenched disorder may disguise as a non-Abelian phase by well approximating the trademark quantized thermal Hall response. Remarkably, the quantization here improves with temperature, in contrast to fully gapped systems. We provide numerical evidence for this effect and discuss its possible implications for the aforementioned experiments.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا