No Arabic abstract
It is known that the Shubnikov--de Haas oscillations can be observed in the Hall resistivity, although their amplitude is much weaker than the amplitude of the diagonal resistivity oscillations. Employing a model of two-dimensional massive Dirac fermions that exhibits anomalous Hall effect, we demonstrate that the amplitude of the Shubnikov--de Haas oscillations of the anomalous Hall conductivity is the same as that of the diagonal conductivity. We argue that the oscillations of the anomalous Hall conductivity can be observed by studying the valley Hall effect in graphene superlattices and the spin Hall effect in the low-buckled Dirac materials.
For the fractional quantum Hall states on a finite disc, we study the thermoelectric transport properties under the influence of an edge and its reconstruction. In a recent study on a torus [Phys. Rev. B 101, 241101 (2020)], Sheng and Fu found a universal non-Fermi liquid power-law scaling of the thermoelectric conductivity $alpha_{xy} propto T^{eta}$ for the gapless composite Fermi-liquid state. The exponent $eta sim 0.5$ appears an independence of the filling factors and the details of the interactions. In the presence of an edge, we find the properties of the edge spectrum dominants the low-temperature behaviors and breaks the universal scaling law of the thermoelectric conductivity. In order to consider individually the effects of the edge states, the entanglement spectrum in real space is employed and tuned by varying the area of subsystem. In non-Abelian Moore-Read state, the Majorana neutral edge mode is found to have more significant effect than that of the charge mode in the low temperature.
In a recent paper by Neupert, Santos, Chamon, and Mudry [Phys. Rev. B 86, 165133 (2012)] it is claimed that there is an elementary formula for the Hall conductivity of fractional Chern insulators. We show that the proposed formula cannot generally be correct, and we suggest one possible source of the error. Our reasoning can be generalized to show no quantity (such as Hall conductivity) expected to be constant throughout an entire phase of matter can possibly be given as the expectation of any time independent short ranged operator.
The anomalous Hall effect (AHE), a Hall signal occurring without an external magnetic field, is one of the most significant phenomena. However, understanding the AHE mechanism has been challenging and largely restricted to ferromagnetic metals. Here, we investigate the recently discovered AHE in the chiral antiferromagnet Mn3Sn by measuring a thermal analog of the AHE, known as an anomalous thermal Hall effect (ATHE). The amplitude of the ATHE scales with the anomalous Hall conductivity of Mn3Sn over a wide temperature range, demonstrating that the AHE of Mn3Sn arises from a dissipationless intrinsic mechanism associated with the Berry curvature. Moreover, we find that the dissipationless AHE is significantly stabilized by shifting the Fermi level toward the magnetic Weyl points. Thus, in Mn3Sn, the Berry curvature emerging from the proposed magnetic Weyl fermion state is a key factor for the observed AHE and ATHE.
We propose a spin Hall device to induce a large spin Hall effect in a superconductor/normal metal (SN) junction. The side jump and skew scattering mechanisms are both taken into account to calculate the extrinsic spin Hall conductivity in the normal metal. We find that both contributions are anomalously enhanced when the voltage between the superconductor and the normal metal approaches to the superconducting gap. This enhancement is attributed to the resonant increase of the density of states in the normal metal at the Fermi level. Our results demonstrate a novel way to control and amplify the spin Hall conductivity by applying an external dc electric field, suggesting that a SN junction has a potential application for a spintronic device with a large spin Hall effect.
The Haldane model on a honeycomb lattice is a paradigmatic example of a system featuring quantized Hall conductivity in the absence of an external magnetic field, that is, a quantum anomalous Hall effect. Recent theoretical work predicted that the anomalous Hall conductivity of massive Dirac fermions can display Shubnikov-de Haas (SdH) oscillations, which could be observed in topological insulators and honeycomb layers with strong spin--orbit coupling. Here, we investigate the electronic transport properties of Chern insulators subject to high magnetic fields by means of accurate spectral expansions of lattice Greens functions. We find that the anomalous component of the Hall conductivity displays visible SdH oscillations at low temperature. textcolor{black}{The effect is shown to result from the modulation of the next-nearest neighbour flux accumulation due to the Haldane term,} which removes the electron--hole symmetry from the Landau spectrum. To support our numerical findings, we derive a long-wavelength description beyond the linear (Dirac cone) approximation. Finally, we discuss the dependence of the energy spectra shift for reversed magnetic fields with the topological gap and the lattice bandwidth.