Do you want to publish a course? Click here

Unsupervised Learning with Steins Unbiased Risk Estimator

107   0   0.0 ( 0 )
 Added by Christopher Metzler
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Learning from unlabeled and noisy data is one of the grand challenges of machine learning. As such, it has seen a flurry of research with new ideas proposed continuously. In this work, we revisit a classical idea: Steins Unbiased Risk Estimator (SURE). We show that, in the context of image recovery, SURE and its generalizations can be used to train convolutional neural networks (CNNs) for a range of image denoising and recovery problems without any ground truth data. Specifically, our goal is to reconstruct an image $x$ from a noisy linear transformation (measurement) of the image. We consider two scenarios: one where no additional data is available and one where we have measurements of other images that are drawn from the same noisy distribution as $x$, but have no access to the clean images. Such is the case, for instance, in the context of medical imaging, microscopy, and astronomy, where noise-less ground truth data is rarely available. We show that in this situation, SURE can be used to estimate the mean-squared-error loss associated with an estimate of $x$. Using this estimate of the loss, we train networks to perform denoising and compressed sensing recovery. In addition, we also use the SURE framework to partially explain and improve upon an intriguing results presented by Ulyanov et al. in Deep Image Prior: that a network initialized with random weights and fit to a single noisy image can effectively denoise that image. Public implementations of the networks and methods described in this paper can be found at https://github.com/ricedsp/D-AMP_Toolbox.



rate research

Read More

This paper studies the problem of learning with augmented classes (LAC), where augmented classes unobserved in the training data might emerge in the testing phase. Previous studies generally attempt to discover augmented classes by exploiting geometric properties, achieving inspiring empirical performance yet lacking theoretical understandings particularly on the generalization ability. In this paper we show that, by using unlabeled training data to approximate the potential distribution of augmented classes, an unbiased risk estimator of the testing distribution can be established for the LAC problem under mild assumptions, which paves a way to develop a sound approach with theoretical guarantees. Moreover, the proposed approach can adapt to complex changing environments where augmented classes may appear and the prior of known classes may change simultaneously. Extensive experiments confirm the effectiveness of our proposed approach.
119 - Jian Liang , Yuren Cao , Shuang Li 2020
Authentication is the task of confirming the matching relationship between a data instance and a given identity. Typical examples of authentication problems include face recognition and person re-identification. Data-driven authentication could be affected by undesired biases, i.e., the models are often trained in one domain (e.g., for people wearing spring outfits) while applied in other domains (e.g., they change the clothes to summer outfits). Previous works have made efforts to eliminate domain-difference. They typically assume domain annotations are provided, and all the domains share classes. However, for authentication, there could be a large number of domains shared by different identities/classes, and it is impossible to annotate these domains exhaustively. It could make domain-difference challenging to model and eliminate. In this paper, we propose a domain-agnostic method that eliminates domain-difference without domain labels. We alternately perform latent domain discovery and domain-difference elimination until our model no longer detects domain-difference. In our approach, the latent domains are discovered by learning the heterogeneous predictive relationships between inputs and outputs. Then domain-difference is eliminated in both class-dependent and class-independent spaces to improve robustness of elimination. We further extend our method to a meta-learning framework to pursue more thorough domain-difference elimination. Comprehensive empirical evaluation results are provided to demonstrate the effectiveness and superiority of our proposed method.
Convolutional neural networks (CNN) have emerged as a powerful tool for solving computational imaging reconstruction problems. However, CNNs are generally difficult-to-understand black-boxes. Accordingly, it is challenging to know when they will work and, more importantly, when they will fail. This limitation is a major barrier to their use in safety-critical applications like medical imaging: Is that blob in the reconstruction an artifact or a tumor? In this work we use Steins unbiased risk estimate (SURE) to develop per-pixel confidence intervals, in the form of heatmaps, for compressive sensing reconstruction using the approximate message passing (AMP) framework with CNN-based denoisers. These heatmaps tell end-users how much to trust an image formed by a CNN, which could greatly improve the utility of CNNs in various computational imaging applications.
152 - Ravi Ganti , Alexander Gray 2011
In this paper we address the problem of pool based active learning, and provide an algorithm, called UPAL, that works by minimizing the unbiased estimator of the risk of a hypothesis in a given hypothesis space. For the space of linear classifiers and the squared loss we show that UPAL is equivalent to an exponentially weighted average forecaster. Exploiting some recent results regarding the spectra of random matrices allows us to establish consistency of UPAL when the true hypothesis is a linear hypothesis. Empirical comparison with an active learner implementation in Vowpal Wabbit, and a previously proposed pool based active learner implementation show good empirical performance and better scalability.
Faced with massive data, is it possible to trade off (statistical) risk, and (computational) space and time? This challenge lies at the heart of large-scale machine learning. Using k-means clustering as a prototypical unsupervised learning problem, we show how we can strategically summarize the data (control space) in order to trade off risk and time when data is generated by a probabilistic model. Our summarization is based on coreset constructions from computational geometry. We also develop an algorithm, TRAM, to navigate the space/time/data/risk tradeoff in practice. In particular, we show that for a fixed risk (or data size), as the data size increases (resp. risk increases) the running time of TRAM decreases. Our extensive experiments on real data sets demonstrate the existence and practical utility of such tradeoffs, not only for k-means but also for Gaussian Mixture Models.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا