Do you want to publish a course? Click here

The On-Line Encyclopedia of Integer Sequences

52   0   0.0 ( 0 )
 Added by N. J. A. Sloane
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

The recent history of The On-Line Encyclopedia of Integer Sequences (or OEIS), describing developments since 2009, and discussing recent sequences involving interesting unsolved problems and in many cases spectacular illustrations. These include: Peaceable Queens, circles in the plane, the earliest cube-free binary sequence, the EKG and Yellowstone permutations, other lexicographically earliest sequences, iteration of number-theoretic functions, home primes and power trains, a memorable prime, a missing prime, Posts tag system, and coordination sequences.



rate research

Read More

We present a motivated exposition of the proof of the following Tverberg Theorem: For every integers $d,r$ any $(d+1)(r-1)+1$ points in $mathbb R^d$ can be decomposed into $r$ groups such that all the $r$ convex hulls of the groups have a common point. The proof is by well-known reduction to the Barany Theorem. However, our exposition is easier to grasp because additional constructions (of an embedding $mathbb R^dsubsetmathbb R^{d+1}$, of vectors $varphi_{j,i}$ and statement of the Barany Theorem) are not introduced in advance in a non-motivated way, but naturally appear in an attempt to construct the required decomposition. This attempt is based on rewriting several equalities between vectors as one equality between vectors of higher dimension.
We give a brief overview of the life and combinatorics of Jeff Remmel, a mathematician with successful careers in both logic and combinatorics.
Let $G$ be a finite cyclic group of order $n ge 2$. Every sequence $S$ over $G$ can be written in the form $S=(n_1g)cdot ... cdot (n_lg)$ where $gin G$ and $n_1,..., n_l in [1,ord(g)]$, and the index $ind (S)$ of $S$ is defined as the minimum of $(n_1+ ... + n_l)/ord (g)$ over all $g in G$ with $ord (g) = n$. In this paper we prove that a sequence $S$ over $G$ of length $|S| = n$ having an element with multiplicity at least $frac{n}{2}$ has a subsequence $T$ with $ind (T) = 1$, and if the group order $n$ is a prime, then the assumption on the multiplicity can be relaxed to $frac{n-2}{10}$. On the other hand, if $n=4k+2$ with $k ge 5$, we provide an example of a sequence $S$ having length $|S| > n$ and an element with multiplicity $frac{n}{2}-1$ which has no subsequence $T$ with $ind (T) = 1$. This disproves a conjecture given twenty years ago by Lemke and Kleitman.
99 - Andrei K. Svinin 2019
Sequences of Genocchi numbers of the first and second kind are considered. For these numbers, an approach based on their representation using sequences of polynomials is developed. Based on this approach, for these numbers some identities generalizing the known identities are constructed.
In this paper, we discuss coin-weighing problems that use a 5-way scale which has five different possible outcomes: MUCH LESS, LESS, EQUAL, MORE, and MUCH MORE. The 5-way scale provides more information than the regular 3-way scale. We study the problem of finding two fake coins from a pile of identically looking coins in a minimal number of weighings using a 5-way scale. We discuss similarities and differences between the 5-way and 3-way scale. We introduce a strategy for a 5-way scale that can find both counterfeit coins among $2^k$ coins in $k+1$ weighings, which is better than any strategy for a 3-way scale.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا