No Arabic abstract
In this work, we study solitary waves in a (2+1)-dimensional variant of the defocusing nonlinear Schrodinger (NLS) equation, the so-called Camassa-Holm NLS (CH-NLS) equation. We use asymptotic multiscale expansion methods to reduce this model to a Kadomtsev--Petviashvili (KP) equation. The KP model includes both the KP-I and KP-
The stability and dynamical properties of the so-called resonant nonlinear Schrodinger (RNLS) equation, are considered. The RNLS is a variant of the nonlinear Schrodinger (NLS) equation with the addition of a perturbation used to describe wave propagation in cold collisionless plasmas. We first examine the modulational stability of plane waves in the RNLS model, identifying the modifications of the associated conditions from the NLS case. We then move to the study of solitary waves with vanishing and nonzero boundary conditions. Interestingly the RNLS, much like the usual NLS, exhibits both dark and bright soliton solutions depending on the relative signs of dispersion and nonlinearity. The corresponding existence, stability and dynamics of these solutions are studied systematically in this work.
In this paper, we characterize a family of solitary waves for NLS with derivative (DNLS) by the structue analysis and the variational argument. Since (DNLS) doesnt enjoy the Galilean invariance any more, the structure analysis here is closely related with the nontrivial momentum and shows the equivalence of nontrivial solutions between the quasilinear and the semilinear equations. Firstly, for the subcritical parameters $4omega>c^2$ and the critical parameters $4omega=c^2, c>0$, we show the existence and uniqueness of the solitary waves for (DNLS), up to the phase rotation and spatial translation symmetries. Secondly, for the critical parameters $4omega=c^2, cleq 0$ and the supercritical parameters $4omega<c^2$, there is no nontrivial solitary wave for (DNLS). At last, we make use of the invariant sets, which is related to the variational characterization of the solitary wave, to obtain the global existence of solution for (DNLS) with initial data in the invariant set $mathcal{K}^+_{omega,c}subseteq H^1(R)$, with $4omega=c^2, c>0$ or $4omega>c^2$. On one hand, different with the scattering result for the $L^2$-critical NLS in cite{Dod:NLS_sct}, the scattering result of (DNLS) doesnt hold for initial data in $mathcal{K}^+_{omega,c}$ because of the existence of infinity many small solitary/traveling waves in $mathcal{K}^+_{omega,c},$ with $4omega=c^2, c>0$ or $4omega>c^2$. On the other hand, our global result improves the global result in cite{Wu-DNLS, Wu-DNLS2} (see Corollary ref{cor:gwp}).
It is well-known that by requiring solutions of the Camassa-Holm equation to satisfy a particular local conservation law for the energy in the weak sense, one obtains what is known as conservative solutions. As conservative solutions preserve energy, one might be inclined to think that any solitary traveling wave is conservative. However, in this paper we prove that the traveling waves known as stumpons are not conservative. We illustrate this result by comparing the stumpon to simulations produced by a numerical scheme for conservative solutions, which has been recently developed by Galtung and Raynaud.
We study the existence and stability of localized states in the two-dimensional (2D) nonlinear Schrodinger (NLS)/Gross-Pitaevskii equation with a symmetric four-well potential. Using a fourmode approximation, we are able to trace the parametric evolution of the trapped stationary modes, starting from the corresponding linear limits, and thus derive the complete bifurcation diagram for the families of these stationary modes. The predictions based on the four-mode decomposition are found to be in good agreement with the numerical results obtained from the NLS equation. Actually, the stability properties coincide with those suggested by the corresponding discrete model in the large-amplitude limit. The dynamics of the unstable modes is explored by means of direct simulations. Finally, while we present the full analysis for the case of the focusing nonlinearity, the bifurcation diagram for the defocusing case is briefly considered too.
The Camassa-Holm equation (CH) is a well known integrable equation describing the velocity dynamics of shallow water waves. This equation exhibits spontaneous emergence of singular solutions (peakons) from smooth initial conditions. The CH equation has been recently extended to a two-component integrable system (CH2), which includes both velocity and density variables in the dynamics. Although possessing peakon solutions in the velocity, the CH2 equation does not admit singular solutions in the density profile. We modify the CH2 system to allow dependence on average density as well as pointwise density. The modified CH2 system (MCH2) does admit peakon solutions in velocity and average density. We analytically identify the steepening mechanism that allows the singular solutions to emerge from smooth spatially-confined initial data. Numerical results for MCH2 are given and compared with the pure CH2 case. These numerics show that the modification in MCH2 to introduce average density has little short-time effect on the emergent dynamical properties. However, an analytical and numerical study of pairwise peakon interactions for MCH2 shows a new asymptotic feature. Namely, besides the expected soliton scattering behavior seen in overtaking and head-on peakon collisions, MCH2 also allows the phase shift of the peakon collision to diverge in certain parameter regimes.