Do you want to publish a course? Click here

A New Class of Retrocausal Models

79   0   0.0 ( 0 )
 Added by Ken Wharton
 Publication date 2018
  fields Physics
and research's language is English
 Authors Ken Wharton




Ask ChatGPT about the research

Globally-constrained classical fields provide a unexplored framework for modeling quantum phenomena, including apparent particle-like behavior. By allowing controllable constraints on unknown past fields, these models are retrocausal but not retro-signaling, respecting the conventional block universe viewpoint of classical spacetime. Several example models are developed that resolve the most essential problems with using classical electromagnetic fields to explain single-photon phenomena. These models share some similarities with Stochastic Electrodynamics, but without the infinite background energy problem, and with a clear path to explaining entanglement phenomena. Intriguingly, the average intermediate field intensities share a surprising connection with quantum weak values, even in the single-photon limit. This new class of models is hoped to guide further research into spacetime-based accounts of weak values, entanglement, and other quantum phenomena.



rate research

Read More

Device independent protocols based on Bell nonlocality, such as quantum key distribution and randomness generation, must ensure no adversary can have prior knowledge of the measurement outcomes. This requires a measurement independence assumption: that the choice of measurement is uncorrelated with any other underlying variables that influence the measurement outcomes. Conversely, relaxing measurement independence allows for a fully `causal simulation of Bell nonlocality. We construct the most efficient such simulation, as measured by the mutual information between the underlying variables and the measurement settings, for the Clauser-Horne-Shimony-Holt (CHSH) scenario, and find that the maximal quantum violation requires a mutual information of just $sim 0.080$ bits. Any physical device built to implement this simulation allows an adversary to have full knowledge of a cryptographic key or `random numbers generated by a device independent protocol based on violation of the CHSH inequality. We also show that a previous model for the CHSH scenario, requiring only $sim 0.046$ bits to simulate the maximal quantum violation, corresponds to the most efficient `retrocausal simulation, in which future measurement settings necessarily influence earlier source variables. This may be viewed either as an unphysical limitation of the prior model, or as an argument for retrocausality on the grounds of its greater efficiency. Causal and retrocausal models are also discussed for maximally entangled two-qubit states, as well as superdeterministic, one-sided and zigzag causal models.
Of all basic principles of classical physics, realism should arguably be the last to be given up when seeking a better interpretation of quantum mechanics. We examine the de Broglie-Bohm pilot wave theory as a well developed example of a realistic theory. We present three challenges to a naive reading of pilot-wave theory, each based on a system of several entangled particles. With the help of a coarse graining of pilot wave theory into a discrete system, we show how these challenges can be answered. However this comes with a cost. In the description of individual systems, particles appear to scatter off empty branches of the wave function as if they were particles, and conversely travel through particles as if they were waves. More generally, the particles of pilot wave theory are led by the guidance equation to move in ways no classical particle would, involving apparent violations of the principles of inertia and momentum conservation.We next argue that the aforementioned cost can be avoided within a retrocausal model. In the proposed version of the pilot wave theory, the particle is guided by a combination of advanced and retarded waves. The resulting account for quantum physics seems to have greater heuristic power, it demands less damage to intuition, and moreover provides some general hints regarding spacetime and causality. This is the first of two papers. In the second [1] we show that, in the context of an explicit model, retrocausality, with respect to an effective, emergent spacetime metric, can coexist with a strict irreversibility of causal processes.
Randomized benchmarking is a technique for estimating the average fidelity of a set of quantum gates. For general gatesets, however, it is difficult to draw robust conclusions from the resulting data. Here we propose a new method based on representation theory that has little experimental overhead and applies to a broad class of benchmarking problems. As an example, we apply our method to a gateset that includes the $T$-gate, and analyze a new interleaved benchmarking protocol that extracts the average fidelity of a 2-qubit Clifford gate using only single-qubit Clifford gates as reference.
We construct a new class of quantum error-correcting codes for a bosonic mode which are advantageous for applications in quantum memories, communication, and scalable computation. These binomial quantum codes are formed from a finite superposition of Fock states weighted with binomial coefficients. The binomial codes can exactly correct errors that are polynomial up to a specific degree in bosonic creation and annihilation operators, including amplitude damping and displacement noise as well as boson addition and dephasing errors. For realistic continuous-time dissipative evolution, the codes can perform approximate quantum error correction to any given order in the timestep between error detection measurements. We present an explicit approximate quantum error recovery operation based on projective measurements and unitary operations. The binomial codes are tailored for detecting boson loss and gain errors by means of measurements of the generalized number parity. We discuss optimization of the binomial codes and demonstrate that by relaxing the parity structure, codes with even lower unrecoverable error rates can be achieved. The binomial codes are related to existing two-mode bosonic codes but offer the advantage of requiring only a single bosonic mode to correct amplitude damping as well as the ability to correct other errors. Our codes are similar in spirit to cat codes based on superpositions of the coherent states, but offer several advantages such as smaller mean number, exact rather than approximate orthonormality of the code words, and an explicit unitary operation for repumping energy into the bosonic mode. The binomial quantum codes are realizable with current superconducting circuit technology and they should prove useful in other quantum technologies, including bosonic quantum memories, photonic quantum communication, and optical-to-microwave up- and down-conversion.
New large eddy simulation (LES) turbulence models for incompressible magnetohydrodynamics (MHD) derived from the variational multiscale (VMS) formulation for finite element simulations are introduced. The new models include the variational multiscale formulation, a residual-based eddy viscosity model, and a mixed model that combines both of these component models. Each model contains terms that are proportional to the residual of the incompressible MHD equations and is therefore numerically consistent. Moreover, each model is also dynamic, in that its effect vanishes when this residual is small. The new models are tested on the decaying MHD Taylor Green vortex at low and high Reynolds numbers. The evaluation of the models is based on comparisons with available data from direct numerical simulations (DNS) of the time evolution of energies as well as energy spectra at various discrete times. A numerical study, on a sequence of meshes, is presented that demonstrates that the large eddy simulation approaches the DNS solution for these quantities with spatial mesh refinement.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا