Do you want to publish a course? Click here

Curved detectors for wide field imaging systems: impact on tolerance analysis

86   0   0.0 ( 0 )
 Added by Emmanuel Hugot
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

In the present paper we consider quantitative estimation of the tolerances widening in optical systems with curved detectors. The gain in image quality allows to loosen the margins for manufacturing and assembling errors. On another hand, the requirements for the detector shape and positioning become more tight. We demonstrate both of the effects on example of two optical designs. The first one is a rotationally-symmetrical lens with focal length of 25 mm, f-ratio of 3.5 and field of view equal to 72$^circ$, working in the visible domain. The second design is a three-mirror anastigmat telescope with focal length of 250 mm, f-ratio of 2.0 and field of view equal to $4^circ times 4^circ$. In both of the cases use of curved detectors allow to increase the image quality and substantially decrease the requirements for manufacturing precision



rate research

Read More

We are planning a future gamma-ray burst (GRB) mission HiZ-GUNDAM to probe the early universe beyond the redshift of z > 7. Now we are developing a small prototype model of wide-field low-energy X-ray imaging detectors to observe high-z GRBs, which cover the energy range of 1 - 20 keV. In this paper, we report overview of its prototype system and performance, especially focusing on the characteristics and radiation tolerance of high gain analog ASIC specifically designed to read out small charge signals.
We present the design of an all-reflective, bi-folded Schmidt telescope aimed at surveys of extended astronomical objects with extremely-low surface brightness. The design leads to a high image quality without any diffracting spider, along with a large aperture and field of view, with a small central obstruction which barely alters the PSF. As an example, we present the design of a high-quality, 36 cm diameter, fast ( f /2.5) telescope working in the visible with a large field of view (1.6{deg}x 2.6{deg}). The telescope can operate with a curved detector (or with a flat detector with a field flattener) and a set of filters. The entrance mirror is anamorphic and replaces the classical Schmidt entrance corrector plate. We show that this anamorphic primary mirror can be manufactured through stress polishing, avoiding high spatial frequency errors, and tested with a simple interferometer scheme. This prototype is intended to serve as a fast-track scientific and technological pathfinder for the future space-based MESSIER mission.
We consider using toroidal curved detectors to improve the performance of imaging optical systems. We demonstrate that some optical systems have an anamorphic field curvature. We consider an unobscured re-imaging three-mirror anastigmat as an example (f=960 mm, F/5.3, FoV 4x4 degrees). By assuming that the image is focused on a toroidal detector surface and perform re-optimization, it becomes possible to obtain a notable gain in the image quality - up to 40 % in terms of the spot RMS radius. Through analytic computations and finite-element analysis, we demonstrate that this toroidal shape can be obtained by bending of a thinned detector in a relatively simple setup.
Binospec is a high throughput, 370 to 1000 nm, imaging spectrograph that addresses two adjacent 8 by 15 fields of view. Binospec was commissioned in late 2017 at the f/5 focus of the 6.5m MMT and is now available to all MMT observers. Aperture masks cut from stainless steel with a laser cutter are used to define the entrance apertures that range from 15 long slits to hundreds of 2 slitlets. System throughputs, including the MMTs mirrors and the f/5 wide-field corrector peak at ~30%. Three reflection gratings, duplicated for the two beams, provide resolutions ($lambda$/$Delta lambda$) between 1300 and $>$5000 with a 1 wide slit. Two through-the-mask guiders are used for target acquisition, mask alignment, guiding, and precision offsets. A full-time Shack-Hartmann wave front sensor allows continuous adjustment of primary mirror support forces, telescope collimation and focus. Active flexure control maintains spectrograph alignment and focus under varying gravity and thermal conditions.
The limits to the angular resolution achievable with conventional ground-based telescopes are unchanged over 70 years. Atmospheric turbulence limits image quality to typically ~1 arcsec in practice. We have developed a new concept of ground-based imaging instrument called GravityCam capable of delivering significantly sharper images from the ground than is normally possible without adaptive optics. The acquisition of visible images at high speed without significant noise penalty has been made possible by advances in optical and near IR imaging technologies. Images are recorded at high speed and then aligned before combination and can yield a 3-5 fold improvement in image resolution. Very wide survey fields are possible with widefield telescope optics. We describe GravityCam and detail its application to accelerate greatly the rate of detection of Earth size planets by gravitational microlensing. GravityCam will also improve substantially the quality of weak shear studies of dark matter distribution in distant clusters of galaxies. The microlensing survey will also provide a vast dataset for asteroseismology studies. In addition, GravityCam promises to generate a unique data set that will help us understand of the population of the Kuiper belt and possibly the Oort cloud.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا