No Arabic abstract
We revise the cosmological phenomenology of Macroscopic Dark Matter (MDM) candidates, also commonly dubbed as Macros. A possible signature of MDM is the capture of baryons from the cosmological plasma in the pre-recombination epoch, with the consequent injection of high-energy photons in the baryon-photon plasma. By keeping a phenomenological approach, we consider two broad classes of MDM in which Macros are composed either of ordinary matter or antimatter. In both scenarios, we also analyze the impact of a non-vanishing electric charge carried by Macros. We derive constraints on the Macro parameter space from three cosmological processes: the change in the baryon density between the end of the Big Bang Nucleosynthesis (BBN) and the Cosmic Microwave Background (CMB) decoupling, the production of spectral distortions in the CMB and the kinetic coupling between charged MDM and baryons at the time of recombination. In the case of neutral Macros we find that the tightest constraints are set by the baryon density condition in most of the parameter space. For Macros composed of ordinary matter and with binding energy $I$, this leads to the following bound on the reduced cross-section: $sigma_X/M_X lesssim 6.8 cdot 10^{-7} left(I/mathrm{MeV}right)^{-1.56} , text{cm}^2 , text{g}^{-1}$. Charged Macros with surface potential $V_X$, instead, are mainly constrained by the tight coupling with baryons, resulting in $sigma_X/M_X lesssim 2 cdot 10^{-11} left(|V_X|/mathrm{MeV}right)^{-2} text{cm}^2 , text{g}^{-1}$. Finally, we show that future CMB spectral distortions experiments, like PIXIE and SuperPIXIE, would have the sensitivity to probe larger regions of the parameter space: this would allow either for a possible evidence or for an improvement of the current bounds on Macros as dark matter candidates.
The increasingly significant tensions within $Lambda$CDM, combined with the lack of detection of dark matter (DM) in laboratory experiments, have boosted interest in non-minimal dark sectors, which are theoretically well-motivated and inspire new search strategies for DM. Here we consider, for the first time, the possibility of DM having simultaneous interactions with photons, baryons, and dark radiation (DR). We have developed a new and efficient version of the Boltzmann code CLASS that allows for one DM species to have multiple interaction channels. With this framework we reassess existing cosmological bounds on the various interaction coefficients in multi-interacting DM scenarios. We find no clear degeneracies between these different interactions and show that their cosmological effects are largely additive. We further investigate the possibility of these models to alleviate the cosmological tensions, and find that the combination of DM-photon and DM-DR interactions can at the same time reduce the $S_8$ tension (from $2.3sigma$ to $1.2sigma$) and the $H_0$ tension (from $4.3sigma$ to $3.1sigma$). The public release of our code will pave the way for the study of various rich dark sectors.
Dark matter interactions with electrons or protons during the early Universe leave imprints on the cosmic microwave background and the matter power spectrum, and can be probed through cosmological and astrophysical observations. We explore these interactions using a diverse suite of data: cosmic microwave background anisotropies, baryon acoustic oscillations, the Lyman-$alpha$ forest, and the abundance of Milky-Way subhalos. We derive constraints using model-independent parameterizations of the dark matter--electron and dark matter--proton interaction cross sections and map these constraints onto concrete dark matter models. Our constraints are complementary to other probes of dark matter interactions with ordinary matter, such as direct detection, big bang nucleosynthesis, various astrophysical systems, and accelerator-based experiments.
Macroscopic dark matter -- macros-- refers to a broad class of alternative candidates to particle dark matter with still unprobed regions of parameter space. These candidates would transfer energy primarily through elastic scattering with approximately their geometric cross-section. For sufficiently large cross-sections, the linear energy deposition could produce observable signals if a macro were to pass through compact objects such as white dwarfs or neutron stars in the form of thermonuclear runaway, leading to a type IA supernova or superburst respectively. We update the constraints from white dwarfs. These are weaker than previously inferred in important respects because of more careful treatment of the passage of a macro through the white dwarf and greater conservatism regarding the size of the region that must be heated to initiate runaway. On the other hand, we place more stringent constraints on macros at low cross-section, using new data from the Montreal White Dwarf Database. New constraints are inferred from the low mass X-ray binary 4U 1820-30, in which more than a decade passed between successive superbursts. Updated microlensing constraints are also reported.
The injection of secondary particles produced by Dark Matter (DM) annihilation at redshift 100<z<1000 affects the process of recombination, leaving an imprint on Cosmic Microwave Background (CMB) anisotropies. Here we provide a new assessment of the constraints set by CMB data on the mass and self-annihilation cross-section of DM particles. Our new analysis includes the most recent WMAP (7-year) and ACT data, as well as an improved treatment of the time-dependent coupling between the DM annihilation energy with the thermal gas. We show in particular that the improved measurement of the polarization signal places already stringent constraints on light DM particles, ruling out thermal WIMPs with mass less then about 10 GeV.
Macroscopic dark matter (macros) refers to a broad class of alternative candidates to particle dark matter with still unprobed regions of parameter space. Prior work on macros has considered elastic scattering to be the dominant energy transfer mechanism in deriving constraints on the abundance of macros for some range of masses $M_x$ and (geometric) cross-sections $sigma_x$ However, macros with a significant amount of electric charge would, through Coulomb interactions, interact strongly enough to have produced observable signals on terrestrial, galactic and cosmological scales. We determine the expected signals and constrain the corresponding regions of parameter space, based on the lack of these signals in observations.