No Arabic abstract
We report the discovery of the hottest hybrid B--type pulsator, KIC,3240411, that exhibits the period spacing in the low--frequency range. This pattern is associated with asymptotic properties of high-order gravity (g) modes. Our seismic modelling made simultaneously with the mode identification shows that dipole axisymmetric modes best fit the observations. Evolutionary models are computed with MESA code and pulsational models with the linear non-adiabatic code employing the traditional approximation to include the effects of rotation. The problem of mode excitation is discussed. We confirm that significant modification is indispensable to explain an instability of both pressure and gravity modes in the observed frequency ranges of KIC,3240411.
We present the analysis of KIC 7760680, the rotating Slowly Pulsating B-type star identified in the Kepler photometry. The oscillation spectrum of the star exhibits a series of 36 frequencies which are quasi-equally spaced in period. We confirm that this series can be associated with prograde dipole modes of consecutive radial orders. In our studies, the effects of rotation were included in the MESA equilibrium models as well as in the puslational calculations in the framework of the traditional approximation. We find that pulsational models computed with the OPLIB opacities best reproduce the observed frequency range. The modified opacity data with an enhancement of the opacity at $log T=5.3$, 5.46 and 5.06 were tested as well. Increasing the OPLIB opacities by about 50% at $log T=5.3$ is sufficient to excite modes in the whole range of 36 frequency peaks of KIC 7760680.
Learned et. al. proposed that a sufficiently advanced extra-terrestrial civilization may tickle Cepheid and RR Lyrae variable stars with a neutrino beam at the right time, thus causing them to trigger early and jogging the otherwise very regular phase of their expansion and contraction. This would turn these stars into beacons to transmit information throughout the galaxy and beyond. The idea is to search for signs of phase modulation (in the regime of short pulse duration) and patterns, which could be indicative of intentional, omnidirectional signaling. We have performed such a search among variable stars using photometric data from the Kepler space telescope. In the RRc Lyrae star KIC 5520878, we have found two such regimes of long and short pulse durations. The sequence of period lengths, expressed as time series data, is strongly auto correlated, with correlation coefficients of prime numbers being significantly higher ($p=99.8$%). Our analysis of this candidate star shows that the prime number oddity originates from two simultaneous pulsation periods and is likely of natural origin. Simple physical models elucidate the frequency content and asymmetries of the KIC 5520878 light curve. Despite this SETI null result, we encourage testing other archival and future time-series photometry for signs of modulated stars. This can be done as a by-product to the standard analysis, and even partly automated.
The Fourier spectrum of the $gamma$-Dor variable KIC 5608334 shows remarkable frequency groups at $sim$3, $sim$6, $sim$9, and 11--12,d$^{-1}$. We explain the four frequency groups as prograde sectoral g modes in a rapidly rotating star. Frequencies of intermediate-to-high radial order prograde sectoral g modes in a rapidly rotating star are proportional to $|m|$ (i.e., $ u propto |m|$) in the co-rotating frame as well as in the inertial frame. This property is consistent with the frequency groups of KIC 5608334 as well as the period vs. period-spacing relation present within each frequency group, if we assume a rotation frequency of $2.2$,d$^{-1}$, and that each frequency group consists of prograde sectoral g modes of $|m| = 1, 2, 3,$ and 4, respectively. In addition, these modes naturally satisfy near-resonance conditions $ u_iapprox u_j+ u_k$ with $m_i=m_j+m_k$. We even find exact resonance frequency conditions (within the precise measurement uncertainties) in many cases, which correspond to combination frequencies.
We report the identification of 61.45 d^-1 (711.2 mu Hz) oscillations, with amplitudes of 62.6-mu mag, in KIC 4768731 (HD 225914) using Kepler photometry. This relatively bright (V=9.17) chemically peculiar star with spectral type A5 Vp SrCr(Eu) has previously been found to exhibit rotational modulation with a period of 5.21 d. Fourier analysis reveals a simple dipole pulsator with an amplitude that has remained stable over a 4-yr time span, but with a frequency that is variable. Analysis of high-resolution spectra yields stellar parameters of T_eff = 8100 +/- 200 K, log g = 4.0 +/- 0.2, [Fe/H] = +0.31 +/- 0.24 and v sin i = 14.8 +/- 1.6 km/s. Line profile variations caused by rotation are also evident. Lines of Sr, Cr, Eu, Mg and Si are strongest when the star is brightest, while Y and Ba vary in anti-phase with the other elements. The abundances of rare earth elements are only modestly enhanced compared to other roAp stars of similar T_eff and log g. Radial velocities in the literature suggest a significant change over the past 30 yr, but the radial velocities presented here show no significant change over a period of 4 yr.
Results of mode identification and seismic modelling of the $beta$ Cep/SBP star 12 Lacertae are presented. Using data on the multi-colour photometry and radial velocity variations, we determine or constrain the mode degree, $ell$, for all pulsational frequencies. Including the effects of rotation, we show that the dominant frequency, $ u_1$, is most likely a pure $ell=1$ mode and the low frequency, $ u_A$, is a dipole retrograde mode. We construct a set of seismic models which fit two pulsational frequencies corresponding to the modes $ell= 0,$ p$_1$ and $ell= 1,$ g$_1$ and reproduce also the complex amplitude of the bolometric flux variations, $f$, for both frequencies simultaneously. Some of these seismic models reproduce also the frequency $ u_A$, as a mode $ell= 1,$ g$_{13}$ or g$_{14}$, and its empirical values of $f$. Moreover, it was possible to find a model fitting the six 12 Lac frequencies (the first five and $ u_A$), only if the rotational splitting was calculated for a velocity of $V_{rm rot}approx 75$ km/s. In the next step, we check the effects of model atmospheres, opacity data, chemical mixture and opacity enhancement. Our results show that the OP tables are preferred and an increase of opacities in the $Z-$bump spoils the concordance of the empirical and theoretical values of $f$.