Do you want to publish a course? Click here

Pulsation period variations in the RRc Lyrae star KIC 5520878

144   0   0.0 ( 0 )
 Added by Michael Hippke
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

Learned et. al. proposed that a sufficiently advanced extra-terrestrial civilization may tickle Cepheid and RR Lyrae variable stars with a neutrino beam at the right time, thus causing them to trigger early and jogging the otherwise very regular phase of their expansion and contraction. This would turn these stars into beacons to transmit information throughout the galaxy and beyond. The idea is to search for signs of phase modulation (in the regime of short pulse duration) and patterns, which could be indicative of intentional, omnidirectional signaling. We have performed such a search among variable stars using photometric data from the Kepler space telescope. In the RRc Lyrae star KIC 5520878, we have found two such regimes of long and short pulse durations. The sequence of period lengths, expressed as time series data, is strongly auto correlated, with correlation coefficients of prime numbers being significantly higher ($p=99.8$%). Our analysis of this candidate star shows that the prime number oddity originates from two simultaneous pulsation periods and is likely of natural origin. Simple physical models elucidate the frequency content and asymmetries of the KIC 5520878 light curve. Despite this SETI null result, we encourage testing other archival and future time-series photometry for signs of modulated stars. This can be done as a by-product to the standard analysis, and even partly automated.



rate research

Read More

We describe and employ a stacking procedure to investigate abundances derived from the low S/N spectra obtained in the Carnegie RR Lyrae Survey (CARRS; Kollmeier et al. 2013). We find iron metallicities that extend from [Fe/H] ~ -2.5 to values at least as large as [Fe/H] ~ -0.5 in the 274-spectrum CARRS RRc data set. We consider RRc sample contamination by high amplitude solar metallicity delta Scuti stars (HADS) at periods less than 0.3 days, where photometric discrimination between RRc and delta Scuti stars has proven to be problematic. We offer a spectroscopic discriminant, the well-marked overabundance of heavy elements, principally [Ba/H], that is a common, if not universal, characteristic of HADS of all periods and axial rotations. No bona fide RRc stars known to us have verified heavy-element overabundances. Three out of 34 stars in our sample with [Fe/H] > -0.7 exhibit anomalously strong features of Sr, Y, Zr, Ba, and many rare earths. However, carbon is not enhanced in these three stars, and we conclude that their elevated n-capture abundances have not been generated in interior neutron-capture nucleosynthesis. Contamination by HADS appears to be unimportant, and metal-rich RRc stars occur in approximately the same proportion in the Galactic field as do metal-rich RRab stars. An apparent dearth of metal-rich RRc is probably a statistical fluke. Finally we show that RRc stars have a similar inverse period-metallicity relationship as has been found for RRab stars.
281 - Marcella Marconi 2009
RR Lyrae stars play an important role as distance indicators and stellar population tracers. In this context the construction of accurate pulsation models is crucial to understand the observed properties and to constrain the intrinsic stellar parameters of these pulsators. The physical mechanism driving pulsation in RR Lyrae stars has been known since the middle of the 20th century and many efforts have been performed during the last few decades in the construction of more and more refined pulsation models. In particular, nonlinear pulsation models including a nonlocal time-dependent treatment of convection, such as the ones originally developed in Los Alamos in the seventies, allow us to reproduce all the relevant observables of radial pulsation and to establish accurate relations and methods to constrain the intrinsic stellar properties and the distance of these variables. The most recent results on RR Lyrae pulsation obtained through these kinds of models will be presented and a few still debated problems will be discussed.
We present our analyses of 15 months of Kepler data on KIC 10139564. We detected 57 periodicities with a variety of properties not previously observed all together in one pulsating subdwarf B star. Ten of the periodicities were found in the low-frequency region, and we associate them with nonradial g-modes. The other periodicities were found in the high-frequency region, which are likely p-modes. We discovered that most of the periodicities are components of multiplets with a common spacing. Assuming that multiplets are caused by rotation, we derive a rotation period of 25.6(1.8) days. The multiplets also allow us to identify the pulsations to an unprecedented extent for this class of pulsator. We also detect l<=2 multiplets, which are sensitive to the pulsation inclination and can constrain limb darkening via geometric cancellation factors. While most periodicities are stable, we detected several regions that show complex patterns. Detailed analyses showed these regions are complicated by several factors. Two are combination frequencies that originate in the superNyquist region and were found to be reflected below the Nyquist frequency. The Fourier peaks are clear in the superNyquist region, but the orbital motion of Kepler smears the Nyquist frequency in the barycentric reference frame and this effect is passed on to the subNyquist reflections. Others are likely multiplets but unstable in amplitudes and/or frequencies. The density of periodicities also make KIC 10139564 challenging to explain using published models. This menagerie of properties should provide tight constraints on structural models, making this subdwarf B star the most promising for applying asteroseismology.
Many RR Lyrae stars show long-term variations of their pulsation period, some of them in a cyclic way. Such behaviour can be attributed to the light-travel time effect (LTTE) caused by an unseen companion. Solutions of the LTTE often suggest very eccentric orbits and minimal mass of the companion on the order of several solar masses, thus, in the black hole range. We discuss the possibility of the occurrence of the RR Lyr-black hole pairs and on the case of Z CVn demonstrate that the LTTE hypothesis can be false in some of the binary candidates.
We report the identification of 61.45 d^-1 (711.2 mu Hz) oscillations, with amplitudes of 62.6-mu mag, in KIC 4768731 (HD 225914) using Kepler photometry. This relatively bright (V=9.17) chemically peculiar star with spectral type A5 Vp SrCr(Eu) has previously been found to exhibit rotational modulation with a period of 5.21 d. Fourier analysis reveals a simple dipole pulsator with an amplitude that has remained stable over a 4-yr time span, but with a frequency that is variable. Analysis of high-resolution spectra yields stellar parameters of T_eff = 8100 +/- 200 K, log g = 4.0 +/- 0.2, [Fe/H] = +0.31 +/- 0.24 and v sin i = 14.8 +/- 1.6 km/s. Line profile variations caused by rotation are also evident. Lines of Sr, Cr, Eu, Mg and Si are strongest when the star is brightest, while Y and Ba vary in anti-phase with the other elements. The abundances of rare earth elements are only modestly enhanced compared to other roAp stars of similar T_eff and log g. Radial velocities in the literature suggest a significant change over the past 30 yr, but the radial velocities presented here show no significant change over a period of 4 yr.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا